ADVANCED DESIGN OF STEEL AND COMPOSITE STRUCTURES

Aldina Santiago

Lecture B.3: 22/2/2017
European Erasmus Mundus Master Course
Sustainable Constructions
under Natural Hazards and Catastrophic Events
520121-1-2011-1-CZ-ERA MUNDUS-EMMC
Module B – Design of industrial buildings using non-uniform members

B.3 – Design of non-uniform members

1 – Introduction
2 – Non-uniform members – approaches and problems
4 – Design resistance of non-uniform members (clause 6.3.4)
5 – Example
Introduction
Tapered steel members are used in steel structures

- Structural efficiency → optimization of cross section capacity → saving of material
- Aesthetical appearance

Multi-sport complex – Coimbra, Portugal

Construction site in front of the Central Station, Europaplatz, Graz, Austria
Tapered members are commonly used in steel frames:

- industrial halls, warehouses, exhibition centers, etc.

- Adequate verification procedures are then required for these types of structures!
Introduction

However, there are several difficulties in performing the stability verification of structures composed of non-uniform members;

- Guidelines are inexistent or not clear for the designer.

- Due to this reason, simplifications that are not mechanically consistent are adopted. These may be either too conservative or even Unconservative!
Non-uniform members

Approaches and Problems
Non-uniform members – approaches and problems

- **Prismatic members** – Clauses 6.3.1 to 6.3.3
 - Developed for prismatic members
 - Sinusoidal imperfections

\[
\delta_0(x) = e_0 \sin\left(\frac{\pi x}{L}\right)
\]

\[
M''(x) = EI\delta'' \propto \sin\left(\frac{\pi x}{L}\right)
\]

- Ayrton-Perry type equation:
 Is maximum at mid span:

\[
\varepsilon(x) = \frac{N}{N_{Rk}} + \frac{M''(x)}{M_{y,Rk}}
\]

OK!
Non-uniform members – approaches and problems

- Non-prismatic members

- Analytical expressions for the elastic critical load are not readily available;

- The choice of the critical section for the application of the buckling resistance formulae is not straightforward.
Non-uniform members – approaches and problems

- Non-uniform members – Clauses 6.3.1 to 6.3.3 apply

- Cross section utilization due to applied (first order) forces is not constant anymore

\[
\frac{N}{N_{Rk}} \quad \text{Not Constant}
\]
Non-uniform members – approaches and problems

- Non-uniform members – Clauses 6.3.1 to 6.3.3 apply ???

\[\delta_0(x) = \epsilon_0 \sin \left(\frac{\pi x}{L} \right) \]

\[M''(x) = EI\delta'' \propto \sin \left(\frac{\pi x}{L} \right) \]

- Ayrton-Perry type equation:
 Is it maximum at mid span ???

First yield criteria:
\[\varepsilon(x) = \frac{N}{N_{Rk}} + \frac{M''(x)}{M_{y,Rk}} \]

KO!
Non-uniform members – approaches and problems

- Non-uniform members – Clauses 6.3.1 to 6.3.3 apply

- Position of the critical cross-section – not at mid span
 - Account for 2nd order effects; iterative procedure, not practical;

- 1st order critical cross section is considered!
Non-uniform members – approaches and problems

- Non-uniform members – Clauses 6.3.1 to 6.3.3 apply

- Variation of cross section class

- Definition of an equivalent class for the member
Non-uniform members – approaches and problems

- Non-uniform members – 2nd order analysis with imperfections

- Definition of local imperfections:
 - Same problem: e_0/L calibrated for prismatic members with sinusoidal imperfections

<table>
<thead>
<tr>
<th>Buckling curve acc. to EC3-1-1, Table 6.1</th>
<th>Elastic analysis</th>
<th>Plastic analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e_0/L</td>
<td>e_0/L</td>
</tr>
<tr>
<td>a_0</td>
<td>1/350</td>
<td>1/300</td>
</tr>
<tr>
<td>a</td>
<td>1/300</td>
<td>1/250</td>
</tr>
<tr>
<td>b</td>
<td>1/250</td>
<td>1/200</td>
</tr>
<tr>
<td>c</td>
<td>1/200</td>
<td>1/150</td>
</tr>
<tr>
<td>d</td>
<td>1/150</td>
<td>1/100</td>
</tr>
</tbody>
</table>
Non-uniform members – approaches and problems

- Non-uniform members – 2nd order analysis with imperfections
- Definition of local imperfections?

Auvent de la Gare Routière – Ermont

Barajas Airport, Madrid, Spain

Italy pavilion, World Expo 2010 – Shanghai
Non-uniform members – approaches and problems

General method allows the verification of the resistance to lateral and lateral torsional buckling for structural components such as:

– single members, built-up or not, uniform or not, with complex support conditions or not, or

– plane frames or subframes composed of such members,
Non-uniform members – approaches and problems

Non-uniform members – GENERAL METHOD (clause 6.3.4)

1. In-plane resistance
 - In-Plane GMNIA calculations
 - $\alpha_{ult,k}$

2. Out-of-plane elastic critical load
 - LEA calculations
 - $\alpha_{cr,op}$

3. Buckling curve
 - $\bar{\lambda}_{op} = \sqrt{\alpha_{ult,k} / \alpha_{cr,op}}$
 - X_{LT}

 $X_{op} = \min(X, X_{LT})$
 $X_{op} = \text{Interpolated}(X, X_{LT})$

 $\chi_{op} \alpha_{ult,k} / \gamma_{M1} \geq 1$
Non-uniform members – approaches and problems

Non-uniform members – GENERAL METHOD (clause 6.3.4)

1. In-plane resistance
 - In-Plane GMNIA calculations
 - $\alpha_{\text{ult},k}$

2. Out-of-plane elastic critical load
 - $\alpha_{\text{cr},op}$
 - Buckling curve
 - $\lambda_{op} = \sqrt{\alpha_{\text{ult},k} / \alpha_{\text{cr},op}}$

3. x_{op}
 - Minimum (x, x_{LT})
 - Interpolated (x, x_{LT})
 - $x_{op} \geq 1$

Minimum load amplified of the design loads to reach the characteristic resistance of the most critical cross-section of the structural component, without lateral-torsional buckling, but accounting for all effects of the in-plane geometrical deformations and imperfection (global and local): N_{Rk} / N_{Ed}
Non-uniform members – approaches and problems

Non-uniform members – GENERAL METHOD (clause 6.3.4)

Minimum amplified for the in-plane the design loads to reach the elastic critical resistance of the structural component, with respect to lateral and lateral-torsional buckling, without accounting for in-plane flexural buckling: \(N_{cr} / N_{Ed} \).

FE can be used to determine \(\alpha_{ult,k} \) and \(\alpha_{cr,op} \).

1. In-plane resistance
 - In-Plane GMNIA calculations
 - \(\alpha_{ult,k} \)

2. Out-of-plane elastic critical load
 - LEA calculations
 - \(\alpha_{cr,op} \)
 - Buckling curve
 - \(\lambda_{op} = \sqrt{\alpha_{ult,k} / \alpha_{cr,op}} \)

3. \(X_{op} = \begin{cases} \text{Minimum} & (X, X_{LT}) \\ \text{Interpolated} & (X, X_{LT}) \end{cases} \)
 - \(\chi_{op} \alpha_{ult,k} / \gamma_{M1} \geq 1 \)
Non-uniform members – approaches and problems

Non-uniform members – GENERAL METHOD (clause 6.3.4)

1. In-plane resistance
 In-Plane GMNIA calculations
 \[\alpha_{\text{ult,k}} \]

2. Out-of-plane elastic critical load
 LEA calculations
 \[\alpha_{\text{cr,op}} \]

\[\bar{\lambda}_{\text{op}} = \sqrt{\alpha_{\text{ult,k}} / \alpha_{\text{cr,op}}} \]

3. Buckling curve
 \[X \quad X_{LT} \]
 \[X_{op} = \text{Minimum} (X, X_{LT}) \]
 \[X_{op} = \text{Interpolated} (X, X_{LT}) \]

\[X_{op} \alpha_{\text{ult,k}} / \gamma_{M1} \geq 1 \]

Global non-dimensional slenderness
Non-uniform members – approaches and problems

- Flexural buckling
- Lateral torsional buckling

Each calculated for the global non-dimensional slenderness λ_{op}.

Reduction factor for:

1. In-plane resistance
 - In-Plane GMNIA calculations
 - $\alpha_{ult,k}$
2. Out-of-plane elastic critical load
 - LEA calculations
 - $\alpha_{cr,op}$
3. Buckling curve
 - $\bar{\lambda}_{op} = \sqrt{\frac{\alpha_{ult,k}}{\alpha_{cr,op}}}$
 - $X_{op} = \min (X, X_{LT})$
 - $X_{op} = \text{Interpolated } (X, X_{LT})$

$\chi_{op} \frac{\alpha_{ult,k}}{\gamma_{M1}} \geq 1$
Non-uniform members – approaches and problems

Non-uniform members – GENERAL METHOD (clause 6.3.4)

1. In-plane resistance
 - In-Plane GMNIA calculations
 - $\alpha_{\text{ult},k}$

2. Out-of-plane elastic critical load
 - LEA calculations
 - $\alpha_{\text{cr,op}}$
 - $\bar{\lambda}_{\text{op}} = \sqrt{\alpha_{\text{ult},k} / \alpha_{\text{cr,op}}}$

3. Buckling curve
 - $\chi_{\text{op}} = \min (X, X_{LT})$
 - $\chi_{\text{op}} = \text{Interpolated} (X, X_{LT})$

χ_{op} is the reduction factor for the non-dimensional slenderness λ_{op}, to take account of lateral and lateral torsional buckling.
Non-uniform members – approaches and problems

Non-uniform members – GENERAL METHOD (clause 6.3.4)

1. In-plane resistance
 - In-Plane GMNIA calculations
 - \(\alpha_{ult,k} \)

2. Out-of-plane elastic critical load
 - LEA calculations
 - \(\alpha_{cr,op} \)
 - \(\lambda_{op} = \sqrt{\alpha_{ult,k} / \alpha_{cr,op}} \)

3. Buckling curve
 - Interpolated \((x, x_{LT}) \)
 - Minimum \((x, x_{LT}) \)

 \(x_{op} \geq 1 \)
Non-uniform members – example

\[N = 80 \text{ kN} \]

\[p = 12 \text{ kN/m} \]

\[IPE 360 \text{ mod.} \]

\((h = 200 \text{ mm}) \)

\[M = 73.5 \text{ kNm} \]

\[N = \text{cte} = 80.0 \text{ kN} \]
Non-uniform members – example
Non-uniform members – example

Verification of the cross-section

- The cross-section resistance is checked using clauses 6.2.8 (bending and shear) and 6.2.9 (bending and axial force) for each class of cross-section.

- The utilization ratio α of the cross-section is given by the ratio between the norm of the applied internal forces and the norm of the bending and axial resistance along the same load value:

$$\alpha = \frac{\sqrt{N_{Ed}^2 + M_{y,Ed}^2}}{\sqrt{N_{max}^2 + M_{y,max}^2}} \leq 1$$

Class 1 or 2: being N_{max} and $M_{y,max}$ the values obtained in the interaction curve.

Class 3: $\alpha = \frac{N_{Ed} + M_{y,Ed}}{Af_y + Wely f_y} \leq 1$
Non-uniform members – example

Verification of the cross-section

Critical cross-section at $x = 4.14$ m (Class 1)
Non-uniform members – example

General method (cl. 6.3.4 using the properties of the critical cross-section)

In-plane buckling resistance

\[\alpha_{ult,k} = \left(\frac{N_{Ed}}{\chi_y N_{Rk}/\gamma M_1} + k_{yy} \frac{M_{y,Ed}}{\chi_{Lt} M_{y,Rk}/\gamma M_1} \right)^{-1} = \frac{1}{0.55} = 1.819 \]

(being \(\chi_{Lt} = 1 \))

Out-of-plane buckling resistance

Equations to calculate \(\alpha_{cr,op} \) are difficult to apply!

Numerically, \(\alpha_{cr,op} = 1.482 \)

Buckling resistance

\[\overline{\lambda}_{op} = \sqrt{\frac{\alpha_{ult,k}}{\alpha_{cr,op}}} = 1.108 \]
Non-uniform members – example

General method (cl. 6.3.4 using the properties of the critical cross-section)

For \(x = 4.14 \) m, buckling curves for out-of-plane buckling and lateral-torsional buckling are curve \(c \).

\[
\overline{\lambda_{op}} = \begin{cases}
\text{curve } c & \Rightarrow \chi_z = 0.48 \\
\text{curve } c & \Rightarrow \chi_{LT} = 0.48
\end{cases}
\]

\[
\chi_{op} = \min(\chi_z; \chi_{LT}) = \text{interp}(\chi_z; \chi_{LT}) = 0.48
\]

So, \(\chi_{op} \frac{\alpha_{ult,k}}{\gamma_{M1}} = \frac{0.48 \times 1.819}{1} = 0.873 < 1 \), therefore buckling resistance is not verified!

The ratio of utilization is \(1/0.873 = 1.15 \) (15% higher than permitted)!
Non-uniform members – example

General method (cl. 6.3.4 using the properties of the critical cross-section)

<table>
<thead>
<tr>
<th>Method</th>
<th>Util. ratio</th>
<th>Diff (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMNIA</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Clause 6.3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x = x_{cr} + \text{eq. properties for critical loads}$</td>
<td>1.22</td>
<td>39</td>
</tr>
<tr>
<td>$x = 0$</td>
<td>1.16</td>
<td>32.8</td>
</tr>
<tr>
<td>$X = x_{cr}$</td>
<td>1.23</td>
<td>40.8</td>
</tr>
<tr>
<td>$X = L$</td>
<td>1.51</td>
<td>72.7</td>
</tr>
<tr>
<td>General method (theoretical) - x_{cr}</td>
<td>1.15</td>
<td>30.8</td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES

SOFTWARE

SemiComp Member Design – Design resistance of prismatic beam-columns”, Greiner et al, RFCS, 2011.
http://www.steelconstruct.com

www.cmm.pt www.steelconstruct.com
ACKNOWLEDGEMENTS

- This lecture was prepared for the Edition 2 of SUSCOS (2013/15) by LUÍS SIMÕES DA SILVA and LILIANA MARQUES (UC).
- This lecture was improved for the Edition 3 of SUSCOS (2014/16) by LUÍS SIMÕES DA SILVA (UC).
- This lecture was improved for the Edition 4 of SUSCOS (2015/17) by ALDINA SANTIAGO (UC).

The SUSCOS powerpoints are covered by copyright and are for the exclusive use by the SUSCOS teachers in the framework of this Erasmus Mundus Master. They may be improved by the various teachers throughout the different editions.