Introduction to Shell Structures

Assoc. Prof. Adrian Dogariu
Introduction to Design of Shell Structures

General

• Metallic shells
Introduction to Design of Shell Structures

General

- Natural shells
Introduction to Design of Shell Structures

General

- Natural shells
Introduction to Design of Shell Structures

General

• Definition:
 A shell is a thin structure composed of curved sheets of material, so that the curvature plays an important role in the structural behavior, realizing a spatial form

• Motivation:
 A shell is the most efficient way of using the material, and can be very useful in case of storage of fluids and solids (uniform loads)
Introduction to Design of Shell Structures

Difficulties

• The curved form may lead to different failure modes and often unexpected behavior occurs

• The analytical formulas are very complex and complicated in comparison with all the other structural forms

• Shell structures are very attractive light weight structures which are especially suited to building as well as industrial applications.
The shell structure is typically found
• in nature
• as well as in classical architecture.

There are two principal uses of shells in civil engineering:
• industrial structures:
 – silos, tanks, cooling towers, reactor vessels etc.
• aesthetic and architectural special structures
Main documents

- Eurocode on strength and stability of Steel Shell Structures – EN1993 Part 1.6 (2007)
- Generic normative standard on shells for chimneys, towers, masts, silos, tanks, pipelines
- Buckling of Steel Shells European Design Recommendations 5th Edition (ECCS – 2008)
Introduction to Design of Shell Structures

General

• Built structural shells
Introduction to Design of Shell Structures

General

- Built structural shells

- Reinforced concrete
- Steel
- Aluminium alloys
- Plastics
- Glass
- Timber
Introduction to Design of Shell Structures

Structural typologies

1. **Eliptic paraboloid**
2. **Hyperbolic paraboloid**
3. **Circular cylinder/cone**
Introduction to Design of Shell Structures

Structural typologies

Shells are the most difficult form of structure to analyse and the form with the most complex behaviour. As a result, all but the simplest conditions must be analysed using computers.
The 250ft diameter by 200ft high dome roughly presents a three-quarter sphere, while geodesic domes before 1967 were hemispherical. The dome consists of steel pipes and 1,900 acrylic panels. To keep the indoor temperature acceptable, the design included mobile triangular panels that would move over the inner surface following the sun. Although brilliant on paper, this feature was too advanced for its time and never worked.
Spruce Goose dome, Long Beach, USA
Architect: R. Duell and Associates
Engineer/builder: Temcor

A - Aluminum cover plate with silicone seal
B - Aluminum gusset plates, bolted to struts
C - Aluminum batten secure silicone gaskets
D - Triangular aluminum panels
E - Wide-flange aluminum struts
F - Stainless steel bolts
Introduction to Design of Shell Structures

Examples – Timber-steel free form grid shell

Multi-hall, Mainz, Germany
Architect: Mutschler, Frei Otto, consultant
Engineer: Ove Arup

The multi-purpose dome for the 1975 garden show spans max. 60m with 50x50mm twin wood slats of 50cm squares that deformed into rhomboids.

1 - Form-finding model
2 - Interior
3 - Mesh detail (steel bands resist shear)
Wood grid shell with PTFE membrane

The theme pavilion advanced the philosophy:

- Wood is the only renewable material
- Requires the least energy for production
- Use of wood maintains healthy forests
Introduction to Design of Shell Structures

Shell Analysis

- Continuous (or reticulated) shells
 - Linear behaviour
 - Non-linear behaviour
 - Elastic
 - Elastic-plastic

- Curved shapes
- Plated structures

Bending stress state
Membrane stress state
Resistance

Stability

Highly sensitive to imperfections

- Buckling is a process by which a structure cannot withstand loads with its original shape, so that it changes this shape in order to find a new equilibrium configuration. This is an undesired process (from the point of view of the engineer), and occurs for a well-defined value of the load.

- The consequences of buckling are basically geometric:
 - There are large displacements in the structure
 - There may also be consequences for the material, in the sense that deflections may induce plasticity in the walls of the structure
Introduction to Design of Shell Structures

Steel Shell Design: Codification

- EN 1090 – Part 1: „Delivery Conditions for prefabricated steel components“
- EN 1090 – Part 2: „Execution of steel structures“

Conceptual design
Design for strength and buckling
Detailing
Introduction to Design of Shell Structures

Behavioural phenomenology of shells

- Behavior of a given structure (slender!) can be controlled by design if the three characteristic ranges of load-deformation curve are correctly defined
 - Pre-critical range
 - Critical point (or range)
 - Post-critical range

\[P \in (0, P_{cr}] \implies \text{Structural stability} \]
\[P > P_{cr} \implies \text{Structural instability} \]
Introduction to Design of Shell Structures

Behavioural phenomenology of shells

- Instability phenomenon e.g. bifurcation instability of cylinders
Introduction to Design of Shell Structures

Behavioural phenomenology of shells

• Instability phenomenon – Jump of Equilibrium or Snap Through Instability
 • Affects shallow arches and shells, reticulated shells

EREN Exhibition hall, Bucharest, 1963
Introduction to Design of Shell Structures

Critical and post-critical behaviour of elastic structures

Columns
- Indifferent post-critical path

![Perfect bar](image1)

Cylinders
- Unstable post-critical path

![Perfect cylindrical shell](image2)

Plates
- Stable post-critical path

![Perfect plate](image3)
Introduction to Design of Shell Structures

Favourable and unfavourable effects of spatiality

• Curvature effect in axial compression

\[
\begin{align*}
\sigma_{cr,p} &= \frac{\pi^2 E}{3(1-\mu^2)} \left(\frac{t}{b} \right)^2 \\
\sigma_{cr,c} &= \frac{\pi^2 E}{3(1-\mu^2)} \left(\frac{t}{b} \right)^2 + \frac{E}{4\pi^2} \left(\frac{b}{r} \right)^2
\end{align*}
\]

Stable component
Unstable component

increase in critical load

increase in sensitivity to geometrical imperfections
Introduction to Design of Shell Structures

Favourable and unfavourable effects of spatiality

- **Curvature effect in axi-symetrical compression**

 - Increase in critical load
 - Increase in sensitivity to geometrical imperfections
Introduction to Design of Shell Structures

Coupled instabilities for plate and shell elements

<table>
<thead>
<tr>
<th>Structure</th>
<th>Instability modes</th>
<th>Class of interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiffened plate</td>
<td>Overall</td>
<td>S-VS</td>
</tr>
<tr>
<td>Sandwich plate</td>
<td>Overall</td>
<td>S</td>
</tr>
<tr>
<td>Stiffened shell</td>
<td>Overall</td>
<td>S-VS</td>
</tr>
</tbody>
</table>

- **W** – weak interaction
- **M** – moderate interaction
- **S** – strong interaction
- **VS** – very strong interaction
Introduction to Design of Shell Structures

Coupled instabilities for plate and shell elements

- Erosion of Theoretical Critical Buckling Load
Introduction to Design of Shell Structures

Instability phenomena: Influence of imperfections

• Agreement of theoretical and experimental values
Introduction to Design of Shell Structures

Instability phenomena: basic types and models

- Dynamic propagation of instability or progressive instability
- Domino effect (double layer grids)
- Instability propagation (single layer reticulated shells)
Introduction to Design of Shell Structures
Models and Methods of Analysis

• Pre-Critical, Critical and Post-Critical Analysis

• Generic classification of structures in terms of characteristic instability types and sensitivity to imperfections
 • Linear, nonlinear, elastic, plastic models
 • Linear buckling analysis (eigen-buckling) – LBA
 • Geometrical nonlinear imperfection analysis – GNIA
 • Geometrical material nonlinear imperfection analysis – GMNIA

• Pre-critical solver methods (Newton – Raphson) or
• Post-critical solver methods (Arc-length); Designed load checking or load-deformation curve
Introduction to Design of Shell Structures
Models and Methods of Analysis

• Design flowchart for the Design of Shells according to EN 1993-1-6

- Geometry
- Material
- Load case
- Boundary conditions
- Imperfection amplitude
- Quality of fabrication
- Partial "safety" factor
- Elastic critical resistance
- Elastic imperfect buckling resistance
- Elastic-plastic interaction
- Characteristic elastic-plastic buckling resistance
- Slenderness
- Design elastic-plastic buckling resistance
Introduction to Design of Shell Structures

Methods of Analysis

• Methods of Analysis – Global Frame Analysis
• Finite Elements Methods for Analysis and Design

Load-displacement curves found using different analyses of the same structure (Rotter, 2011)
Introduction to Design of Shell Structures

Methods of Analysis

• Basic modes for behaviour
 a) Membrane
 b) Bending shell
 c) Shell like a member
Introduction to Design of Shell Structures

Methods of Analysis

• Basic Equations
 • Simplified Linear Shell Theory
 • The Love-Kirchhoff assumptions (simplified model)
 • The shell thickness is negligibly small in comparison with the least radius of curvature of the shell middle surface (shell is thin)
 • Strains and displacements that arise within the shell are small (products of deformations quantities that occur in the derivation of the theory may be neglected, ensuring that the system is described by a set of geometrically linear equations)
 • Straight lines that are normal to the middle surface prior to deformation remain straight and normal to the middle surface during deformation and experience no change in length (analogue to hypothesis for beams – plane sections before bending remain plane after bending)
 • The direct stress acting in the direction normal to the shell middle surface is negligible (not valid in the vicinity of concentrated transverse loads)
Introduction to Design of Shell Structures

Methods of Analysis

• Model of an axi-symmetrical Loaded Shell

Model of an axisymetrically loaded shell

Geometrical parameter of the spherical shell
Introduction to Design of Shell Structures
Methods of Analysis

- General Rotation Shell
 - Membrane Theory: Equilibrium Equations for Unsymmetrical Actions

\[
\frac{\partial}{\partial \phi} \left(N_\phi r_0 \right) + \frac{\partial N_{\theta \phi}}{\partial \theta} r_1 - N_\theta r_1 \cos \phi + Y r_1 r_0 = 0
\]

\[
\frac{\partial}{\partial \phi} \left(r_0 N_\phi \theta \right) + \frac{\partial N_\theta}{\partial \theta} r_1 + N_{\theta \phi} r_1 \cos \phi + X r_0 r_1 = 0
\]

\[
\frac{N_\phi}{r_1} + \frac{N_\theta}{r_2} + z = 0
\]
Introduction to Design of Shell Structures

Methods of Analysis

• Cylindrical Shells
 - Bending Theory Axisymmetric Loading

\[
\begin{align*}
\frac{dN_x}{dx} a \cdot dx \cdot d\varphi &= 0 \\
\frac{dQ_x}{dx} a \cdot dx \cdot d\varphi + N_\varphi dx \cdot d\varphi + Z \cdot a \cdot dx \cdot d\varphi &= 0 \\
\frac{dM_x}{dx} a \cdot dx \cdot d\varphi - Q_x \cdot a \cdot dx \cdot d\varphi &= 0 \\
\end{align*}
\]

\[
D \frac{d^4w}{dx^4} + \frac{Eh}{a^2} w = Z ; \quad D = \frac{Eh^3}{12(1-\nu^2)}
\]
Introduction to Design of Shell Structures

Methods of Analysis

- Shells
- General Bending Theory

\[
\begin{align*}
\frac{a}{\partial x} \frac{\partial N_x}{\partial x} + \frac{\partial N_{\varphi x}}{\partial \varphi} &= 0 \\
\frac{\partial N_{\varphi x}}{\partial \varphi} + a \frac{\partial N_{x \varphi}}{\partial x} - Q_{\varphi} &= 0 \\
a \frac{\partial Q_x}{\partial x} + \frac{\partial Q_{\varphi}}{\partial \varphi} + N_{\varphi} + q \cdot a &= 0 \\
\frac{\partial M_{x \varphi}}{\partial \varphi} + a \frac{\partial M_x}{\partial x} - aQ_x &= 0
\end{align*}
\]

\[
\begin{align*}
\frac{a}{\partial x} \frac{\partial N_x}{\partial x} + \frac{\partial N_{\varphi x}}{\partial \varphi} &= 0 \\
\frac{\partial N_{\varphi x}}{\partial \varphi} + a \frac{\partial N_{x \varphi}}{\partial x} - Q_{\varphi} &= 0 \\
\frac{\partial Q_x}{\partial x} + \frac{\partial Q_{\varphi}}{\partial \varphi} + N_{\varphi} + q \cdot a &= 0 \\
\frac{\partial M_{x \varphi}}{\partial \varphi} + a \frac{\partial M_x}{\partial x} - aQ_x &= 0
\end{align*}
\]
Introduction to Design of Shell Structures

Methods of Analysis

- **Basic Equations**

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Equation</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Equilibrium equations (static)</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>2. Deformability compatibility (geometric)</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>3. Physical aspect</td>
<td>6</td>
<td>---</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
Introduction to Design of Shell Structures
Methods of Analysis

• Buckling of Cylindrical Shells in Compression
 • General Case

Equilibrium equations for elastic buckling:

\[
\begin{align*}
\frac{\partial N_x}{\partial x} + \frac{\partial N_{yx}}{\partial \theta} &= 0 \\
\frac{\partial N_y}{\partial \theta} + a \frac{\partial N_x}{\partial x} + aN_x \frac{\partial^2 v}{\partial x^2} + \frac{\partial M_{xy}}{\partial x} - \frac{\partial M_x}{\partial \theta} &= 0 \\
aN_x \frac{\partial^2 w}{\partial x^2} + N_y + a \frac{\partial^2 M_x}{\partial x^2} + \frac{\partial^2 M_{yx}}{\partial x \partial \theta} + \frac{\partial^2 M_y}{a \partial \theta^2} - \frac{\partial^2 M_{xy}}{\partial x \partial \theta} &= 0
\end{align*}
\]

with solutions:

\[
\begin{align*}
u &= A \sin n \theta \cos \frac{m \pi x}{l} \\
v &= B \cos n \theta \sin \frac{m \pi x}{l} \\
w &= C \sin n \theta \sin \frac{m \pi x}{l}
\end{align*}
\]

\(n = 0 \quad \Rightarrow \quad u, w = f(x) \quad \text{axial – symmetrical buckling} \)
Introduction to Design of Shell Structures

Methods of Analysis

- Cylindrical Shells
- Membrane Theory Application for Wind Action

\[N_\varphi = \frac{q\eta^2}{r_0} \cos \theta \]

\[N_{\varphi\theta} = -2q\eta \sin \theta \]

\[N_\theta = -qr_0 \cos \theta \]
Introduction to Design of Shell Structures

Methods of Analysis

• Simplified Design Formulae (Cylindrical shells)
 • Two possible approaches
 • Overall column buckling if l/r ratio is large
 • Shell buckling which involves the cross section deformation and can be, in general, either:
 • Axisymmetric, when the displacement are constant around circumferential section
 • Asymmetric (chessboard shape), when waves are formed in both axial circumferential directions

It can be shown theoretically that both modes correspond to the same buckling load
Introduction to Design of Shell Structures

Methods of Analysis

• Simplified Design Formulae
 • Axial-symmetric buckling of cylindrical shell in compression

\[D \frac{d^4 v}{dx^4} + N_x \frac{d^2 w}{dx^2} + Eh \frac{w}{a^2} = 0 \]

\[D = \frac{Eh^3}{12(1 - \mu^2)} \]

Radial displacement:

\[w = -A \sin \frac{m \pi x}{l} \]

Elastic critical axial stress (\(\sigma_{cr} = \frac{N_{cr}}{h} \))

\[\sigma_{cr} = \frac{Eh}{a \sqrt{3(1 - \nu^2)}} \quad ; \quad \frac{m \pi}{l} = 4 \sqrt{\frac{Eh}{a^2 D}} \]

For \(\nu = 0.3 \Rightarrow \frac{l}{m} \approx 1.72 \sqrt{ah} \)

• In case of axial-symmetrical buckling, the critical shear does not depend of cylinder length!
• If one of the cylinder ends is free (\(w \neq 0 \)), \(\sigma_{cr} \) drops to 38% compared to simple supported case.
• Cylinder is highly sensitive to tangential displacements at the boundaries. If \(\nu \neq 0 \), critical stress drops to 50%!
Introduction to Design of Shell Structures

Methods of Analysis

- Simplified Design Formulae
 - Axial-symmetric buckling of cylindrical shell in compression

\[\sigma_{cr} = \frac{h \sqrt{E E_t}}{a \sqrt{3(1 - \nu^2)}} \]

\[\frac{l}{m} \approx 1.72 h a \sqrt{\frac{E_t}{E}} \]
Introduction to Design of Shell Structures

Methods of Analysis

- Simplified Design Formulae
 - Axial-symmetric buckling of cylindrical shell in compression
 - Post-critical buckling: stable and unstable components

\[\sigma_{cr} = \frac{N_{cr}}{h} = D \left(\frac{m^2 \pi^2}{h l^2} + \frac{E}{a^2 D} \frac{l^2}{m^2 \pi^2} \right) \]

\[N_{cr} = D \left(\frac{m \pi^2}{l} \right)^2 + \frac{E h l}{a^2} \left(\frac{h}{m \pi} \right)^2 \]

Stable component (inextensional bending deformation – x direction)

Unstable component (extensionally circumferential deformation – y direction)
Introduction to Design of Shell Structures

Methods of Analysis

- Simplified Design Formulae
 - Axial-symmetric buckling of cylindrical shell in compression
 - Post-critical buckling equation

\[
\frac{N}{N_{cr}} = 1 + \frac{1}{8} \theta_m^2 - \frac{3}{8} \frac{Eh}{N_{cr}a^2} \left(\frac{l}{m\pi} \right)^2 \theta_m^2
\]

Stable component

Unstable component

- The effect of circumferential extensional deformations increases the value of critical load, but change the type of instability from stable to unstable!
Introduction to Design of Shell Structures

Methods of Analysis

- Simplified Design Formulae
 - Axial-symmetric buckling of cylindrical shell in compression
 - Examples: medium length cylinder
 - \((i,j)\) \(i\) = no. of longitudinal half-length waves;
 \(j\) = no. of circumferential half-length waves
Introduction to Design of Shell Structures

Methods of Analysis

- Simplified Design Formulae
 - Axial-symmetric buckling of cylindrical shell in compression
 - Examples: long cylinder
Introduction to Design of Shell Structures

Methods of Analysis

• Simplified Design Formulae
 • Axial-symmetric buckling of cylindrical shell in compression
 • Examples: short cylinder
Introduction to Design of Shell Structures

Methods of Analysis

• Simplified Design Formulae
 • Axial-symmetric buckling of cylindrical shell in compression
 • Principle of ECCS approach (ECCS Recommendations 1998)
 • Real cylinders are highly sensitive to imperfections
 • “Knock-down” factor α is introduced to account for imperfections and for plastic effects

\[\sigma_d = \alpha \sigma_{cr} \]

• α depends on:
 • Shell geometry
 • Loading conditions
 • Initial imperfections
 • Material properties

Test data and design curve (typical) for cylinders subject to axial compression
Introduction to Design of Shell Structures

Methods of Analysis

- Simplified Design Formulae
 - Axial-symmetric buckling of cylindrical shell in compression
 - Principle of ECCS approach
 - For unstiffened cylinders, is similar to the one for column in axial compression

\[
\lambda \geq \sqrt{2} \quad \Rightarrow \quad \alpha \sigma_{cr} \leq 0.5 f_y
\]
\[
\frac{\sigma_n}{f_y} = \left(\frac{1}{\lambda^2} \right) \gamma M 1
\]
\[
\lambda \leq \sqrt{2} \quad \Rightarrow \quad \alpha \sigma_{cr} \geq 0.5 f_y
\]
\[
\frac{\sigma_n}{f_y} = 1 - 0.4123 \lambda^{1.2}
\]
Introduction to Design of Shell Structures

Methods of Analysis

- **Simplified Design Formulae**
 - Buckling of cylindrical shells under external pressure
 - Membrane (hoop) stress in practical range
 \[
 \sigma_y = \frac{pa}{h}; \quad \sigma_x = 0
 \]
 \[
 \sigma_y = \frac{pa}{h}; \quad \sigma_x = 0.5\sigma_\theta
 \]

- **Von Misses formula for critical pressure, \(\sigma_{cr} \)**
 \[
 \sigma_{cr} = \frac{Eh}{a} \left[\frac{1}{(n^2 - 1)\lambda_3^2} + \frac{h^2}{12a^2} \left(n^2 - 1 + \frac{2n^2 - 1 - \nu}{\lambda_3} \right) \right]
 \]
 \[
 \lambda_1 = \frac{\pi a}{l}; \quad \lambda_3 = 1 + \left(\frac{n}{\lambda_1} \right)^2
 \]
 \[
 p_{cr} = \frac{Eh^3}{a^3} \left(\frac{n^2 - 1}{1 - \nu^2} \right)
 \]
 \[
 n \Rightarrow \min p_{cr}
 \]

Simplified formulae for long cylinders

![Diagram of cylindrical shell under external pressure](image)
Introduction to Design of Shell Structures

Methods of Analysis

- Simplified Design Formulae
 - Buckling of cylindrical shells under external pressure
 - Principle of ECCS approach

\[
0 \leq \lambda \leq 1 \quad \frac{p_u}{p_y} = \frac{1}{1 + \lambda^2}
\]

\[
\lambda > 1 \quad \frac{p_u}{p_y} = \frac{\alpha}{\lambda^2}; \quad \alpha = 0.5
\]

\[
\lambda = \sqrt{\frac{p_y}{p_{cr}}}
\]

\[
P_{cr} = E \left(\frac{h}{a} \right) \beta_{\text{min}}
\]

for \(l/a \geq 0.5 \Rightarrow \beta_{\text{min}} = \frac{0.855}{1 - \nu^2} \left(\frac{h}{a} \right) \left(\frac{l}{a} \right)^{1.5}
\]

ECCS design strength for unstiffened cylinder under uniform pressure

\[
\lambda = \sqrt{\frac{p_y}{p_{cr}}}
\]
Introduction to Design of Shell Structures

Methods of Analysis

• Simplified Design Formulae
 • Buckling of cylindrical shells under external pressure
• Principle of ECCS approach
 • Wind action is more complex than simply an external pressure
 • It is needed to check the cylinder stability separately for:
 • Wind radial pressure
 • Wind axial effects
 • Wind tangent effects
 • Interaction of the three
• Approximately, wind critical pressure can be taken as 1.6 times critical external pressure (Maderspach, Gaunt, Sword)
• ECCS Design Recommendations (No. 125/2008) offers also a solution
Introduction to Design of Shell Structures

Methods of Analysis

- Simplified Design Formulae
- Buckling of cylindrical shells under compression and external pressure

\[\frac{\sigma_{x}}{\sigma_{x,cr}} + \frac{p}{p_{cr}} \]

Interaction curve
Introduction to Design of Shell Structures

Methods of Analysis

• Simplified Design Formulae
 • Buckling of cylindrical shells in bending
 • (Flügge) →
 \[
 \left(\sigma_{cr,x} \right)^M \approx 1.33 \left(\sigma_{cr,x} \right)^N_x
 \]
 • Long cylinders (Brazier) →
 \[
 M_{cr} = \frac{0.99}{1 - \nu^2} Eh^2 a
 \]
Introduction to Design of Shell Structures

Methods of Analysis

- Simplified Design Formulae
 - Buckling of cylindrical shells in torsion
 - (Swerin and Flügge) \(\Rightarrow \) long cylinders
 \[
 \tau_{cr} = \frac{E}{3\sqrt{2}(1-\nu^2)^{3/4}} \left(\frac{h}{a} \right)^{3/2}
 \]
 - (Donnel) \(\Rightarrow \) short and medium long cylindrical shells
 - Fixed end
 \[
 \tau_{cr} = \frac{E}{(1-\nu^2)} \left(\frac{h}{l} \right)^2 \left\{ 4.6 + \left[7.8 + 1.67 \left(\frac{l}{2ah} \right) \right]^{1/2} \right\}
 \]
 - Simple Supported End
 \[
 \tau_{cr} = \frac{E}{(1-\nu^2)} \left(\frac{h}{l} \right)^2 \left\{ 2.8 + \left[2.6 + 1.4 \left(\frac{l^2}{2ah} \right) \right]^{3/2} \right\}
 \]
Introduction to Design of Shell Structures

Methods of Analysis

- **Simplified Design Formulae**
 - Cylindrical shells under interactive buckling
 \[
 \frac{\sigma}{\sigma_{cr}} + \left(\frac{\tau}{\tau_{cr}}\right)^2 = 1
 \]
 - Bending + torsion
 \[
 \frac{\sigma}{\sigma_{x,cr}} + \left(\frac{\tau}{\tau_{cr}}\right)^2 = 1
 \]
 - Compression + torsion
 \[
 \frac{p}{p_{cr}} + \left(\frac{\tau}{\tau_{cr}}\right)^2 = 1
 \]
 - External pressure + torsion
 \[
 \frac{M}{M_{cr}} + \frac{p}{p_{cr}} = 1 \text{ or } \left(\frac{\sigma_x}{\sigma_{x,cr}}\right)^2 + \left(\frac{p}{0.9p_{cr}}\right)^2 = 1
 \]
 - Bending + external pressure
 \[
 \frac{\sigma}{\sigma_{x,cr}} + \frac{p}{p_{cr}} + \left(\frac{\tau}{\tau_{cr}}\right)^2 = 1
 \]
 - Axial compression + external pressure + torsion
 \[
 \frac{\sigma}{\sigma_{x,cr}} + \frac{p}{p_{cr}} + \left(\frac{\tau}{\tau_{cr}}\right)^2 = 1
 \]
 - Axial compression + bending + torsion
 \[
 \frac{\sigma}{\sigma_{x,cr}} + \frac{\sigma}{\sigma_{x,cr}} + \left(\frac{\tau}{\tau_{cr}}\right)^2 = 1
 \]
Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells

• **Basis of design and modelling**
 - Shells shall be designed in acc. with EN1990 and, in particular, to satisfy the following requirements:
 - Overall equilibrium
 - Equilibrium between actions and internal forces and moments
 - Limitation of cracks due to cyclic plastification
 - Limitation of cracks due to fatigue

• **Types of analysis:**
 - Global analysis
 - Membrane theory analysis
 - Linear elastic shell analysis
 - Linear elastic bifurcation analysis
 - Geometrically nonlinear elastic analysis
 - Materially nonlinear analysis
 - Geometrically and materially nonlinear analysis
 - Geometrically nonlinear elastic analysis with imperfections included
 - Geometrically and materially nonlinear analysis with imperfections
Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells

• Basis of design and modelling:
 • Shells shall be designed in acc. with EN1990 and, in particular, to satisfy the following requirements:
 • Overall equilibrium
 • Equilibrium between actions and internal forces and moments
 • Limitation of cracks due to cyclic plastification
 • Limitation of cracks due to fatigue

• Types of analysis:
 • Global analysis
 • Membrane theory analysis
 • Linear elastic shell analysis
 • Linear elastic bifurcation analysis
 • Geometrically nonlinear elastic analysis
 • Materially nonlinear analysis
 • Geometrically and materially nonlinear analysis
 • Geometrically nonlinear elastic analysis with imperfections included
 • Geometrically and materially nonlinear analysis with imperfections

approximate treatments of certain parts of the structure
Introduction to Design of Shell Structures
Design of Steel Structures: Strength and Stability of Shells

• Basis of design and modelling
 • Shells shall be designed in acc. with EN1990 and, in particular, to satisfy the following requirements:
 • Overall equilibrium
 • Equilibrium between actions and internal forces and moments
 • Limitation of cracks due to cyclic plastification
 • Limitation of cracks due to fatigue

• Types of analysis:
 • Global analysis
 • Membrane theory analysis
 • Linear elastic shell analysis
 • Linear elastic bifurcation analysis
 • Geometrically nonlinear elastic analysis
 • Materially nonlinear analysis
 • Geometrically and materially nonlinear analysis
 • Geometrically nonlinear elastic analysis with imperfections included
 • Geometrically and materially nonlinear analysis with imperfections

Conditions of use:
- the boundary conditions are appropriate for transfer of the stresses in the shell into support reactions without causing bending effects;
- the shell geometry varies smoothly in shape (without discontinuities);
- the loads have a smooth distribution (without locally concentrated or point loads).
Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells

• **Basis of design and modelling**
 - Shells shall be designed in acc. with EN1990 and, in particular, to satisfy the following requirements:
 - Overall equilibrium
 - Equilibrium between actions and internal forces and moments
 - Limitation of cracks due to cyclic plastification
 - Limitation of cracks due to fatigue

• **Types of analysis:**
 - Global analysis
 - Membrane theory analysis
 - Linear elastic shell analysis
 - Linear elastic bifurcation analysis
 - Geometrically nonlinear elastic analysis
 - Materially nonlinear analysis
 - Geometrically and materially nonlinear analysis
 - Geometrically nonlinear elastic analysis with imperfections included
 - Geometrically and materially nonlinear analysis with imperfections
Basis of design and modelling

Shells shall be designed in acc. with EN1990 and, in particular, to satisfy the following requirements:

- Overall equilibrium
- Equilibrium between actions and internal forces and moments
- Limitation of cracks due to cyclic plastification
- Limitation of cracks due to fatigue

Types of analysis:

- Global analysis
- Membrane theory analysis
- Linear elastic shell analysis
- Linear elastic bifurcation analysis
- Geometrically nonlinear elastic analysis
- Materially nonlinear analysis
- Geometrically and materially nonlinear analysis
- Geometrically nonlinear elastic analysis with imperfections included
- Geometrically and materially nonlinear analysis with imperfections

LBA
- linear elastic material law
- linear small deflection theory
- imperfections of all kinds are ignored
- the basis of the critical buckling resistance evaluation
Basis of design and modelling:
- Shells shall be designed in accordance with EN1990 and, in particular, to satisfy the following requirements:
 - Overall equilibrium
 - Equilibrium between actions and internal forces and moments
 - Limitation of cracks due to cyclic plastification
 - Limitation of cracks due to fatigue

Types of analysis:
- Global analysis
- Membrane theory analysis
- Linear elastic shell analysis
- Linear elastic bifurcation analysis
- Geometrically nonlinear elastic analysis
- Materially nonlinear analysis
- Geometrically and materially nonlinear analysis
- Geometrically nonlinear elastic analysis with imperfections included
- Geometrically and materially nonlinear analysis with imperfections

GNA:
- Change in the geometry of the structure
- The elastic buckling load of the perfect structure
Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells

- Basis of design and modelling
 - Shells shall be designed in acc. with EN1990 and, in particular, to satisfy the following requirements:
 - Overall equilibrium
 - Equilibrium between actions and internal forces and moments
 - Limitation of cracks due to cyclic plastification
 - Limitation of cracks due to fatigue

- Types of analysis:
 - Global analysis
 - Membrane theory analysis
 - Linear elastic shell analysis
 - Linear elastic bifurcation analysis
 - Geometrically nonlinear elastic analysis
 - Materially nonlinear analysis
 - Geometrically and materially nonlinear analysis
 - Geometrically nonlinear elastic analysis with imperfections included
 - Geometrically and materially nonlinear analysis with imperfections

MNA - gives the plastic limit load and the plastic strain increment \(\Delta \varepsilon \)
Basis of design and modelling

Shells shall be designed in acc. with EN1990 and, in particular, to satisfy the following requirements:

- Overall equilibrium
- Equilibrium between actions and internal forces and moments
- Limitation of cracks due to cyclic plastification
- Limitation of cracks due to fatigue

Types of analysis:

- Global analysis
- Membrane theory analysis
- Linear elastic shell analysis
- Linear elastic bifurcation analysis
- Geometrically nonlinear elastic analysis
- Materially nonlinear analysis
- Geometrically and materially nonlinear analysis
- Geometrically nonlinear elastic analysis with imperfections
- Geometrically and materially nonlinear analysis with imperfections
Basis of design and modelling

- Shells shall be designed in acc. with EN1990 and, in particular, to satisfy the following requirements:
 - Overall equilibrium
 - Equilibrium between actions and internal forces and moments
 - Limitation of cracks due to cyclic plastification
 - Limitation of cracks due to fatigue

Types of analysis:

- Global analysis
- Membrane theory analysis
- Linear elastic shell analysis
- Linear elastic bifurcation analysis
- Geometrically nonlinear elastic analysis
- Materially nonlinear analysis
- Geometrically and materially nonlinear analysis
- Geometrically nonlinear elastic analysis with imperfections included
- Geometrically and materially nonlinear analysis with imperfections

GNIA - where compression or shear stresses dominate in the shell
- elastic buckling loads of the "real" imperfect structure
Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells

• Basis of design and modelling
 • Shells shall be designed in acc. with EN1990 and, in particular, to satisfy the following requirements:
 • Overall equilibrium
 • Equilibrium between actions and internal forces and moments
 • Limitation of cracks due to cyclic plastification
 • Limitation of cracks due to fatigue

• Types of analysis:
 • Global analysis
 • Membrane theory analysis
 • Linear elastic shell analysis
 • Linear elastic bifurcation analysis
 • Geometrically nonlinear elastic analysis
 • Materially nonlinear analysis
 • Geometrically and materially nonlinear analysis
 • Geometrically nonlinear elastic analysis with imperfections included
 • Geometrically and materially nonlinear analysis with imperfections

GMNIA - gives the elasto-plastic buckling loads for the "real" imperfect structure
- elastic buckling loads of the "real" imperfect structure
Basis of design and modelling

Shells shall be designed in acc. with EN1990 and, in particular, to satisfy the following requirements:

- Overall equilibrium
- Equilibrium between actions and internal forces and moments
- Limitation of cracks due to cyclic plastification
- Limitation of cracks due to fatigue

Types of analysis:

- Global analysis
- Membrane theory analysis
- Linear elastic shell analysis
- Linear elastic bifurcation analysis
- Geometrically nonlinear elastic analysis
- Materially nonlinear analysis
- Geometrically and materially nonlinear analysis
- Geometrically nonlinear elastic analysis with imperfections
- Geometrically and materially nonlinear analysis with imperfections

Conditions of use:

- the boundary conditions are appropriate for transfer of the stresses in the shell into support reactions without causing bending effects;
- the shell geometry varies smoothly in shape (without discontinuities);
- the loads have a smooth distribution (without locally concentrated or point loads).

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Shell theory</th>
<th>Material law</th>
<th>Shell geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane theory of shells</td>
<td>membrane equilibrium</td>
<td>not applicable</td>
<td>perfect</td>
</tr>
<tr>
<td>Linear elastic shell analysis (LBA)</td>
<td>linear bending and stretching</td>
<td>linear</td>
<td>perfect</td>
</tr>
<tr>
<td>Geometrically non-linear elastic analysis (GNA)</td>
<td>non-linear</td>
<td>linear</td>
<td>perfect</td>
</tr>
<tr>
<td>Materially non-linear analysis (MNA)</td>
<td>linear</td>
<td>non-linear</td>
<td>perfect</td>
</tr>
<tr>
<td>Geometrically and materially non-linear analysis (GMNA)</td>
<td>non-linear</td>
<td>non-linear</td>
<td>imperfect</td>
</tr>
<tr>
<td>Geometrically non-linear elastic analysis with imperfections (GNIA)</td>
<td>non-linear</td>
<td>linear</td>
<td>imperfect</td>
</tr>
<tr>
<td>Geometrically and materially non-linear analysis with imperfections (GMNIA)</td>
<td>non-linear</td>
<td>non-linear</td>
<td>imperfect</td>
</tr>
</tbody>
</table>
Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells

• Materials and geometry
 • The rules in EN 1993-1-6 are not limited to steel shell structures
 • The standard is valid for isotropic shells and shell segments made from any materials that may be represented as ideal elastic-plastic
 • For materials with no well defined yield point, 0.2% proof stress can be taken
 • The material properties apply to temperatures not exceeding 150 ºC (otherwise see EN 13084-7, 2005)
 • Where materials has a significant different stress strain curve, there are alternative ways of representation of the material behaviour
 • Bauschinger effect
 • For austenitic steels (and aluminium alloys) at higher plastic strains, Rasmussen (2003) curve is more appropriate than Ramberg-Osgood
Materials and geometry

- The rules in EN 1993-1-6 are not limited to steel shell structures. The standard is valid for isotropic shells and shell segments made from any materials that may be represented as ideal elastic-plastic.

- For materials with no well-defined yield point, the 0.2% proof stress can be taken.

- The material properties apply to temperatures not exceeding 150 ºC (otherwise, see EN 13084-7, 2005).

- Where materials have a significantly different stress-strain curve, alternative ways of representation of the material behavior are possible. Bauschinger effect is also considered.

- For austenitic steels (and aluminum alloys) at higher plastic strains, the Rasmussen (2003) curve is more appropriate than the Ramberg-Osgood curve.

[Diagram showing stress-strain curves with Bauschinger effect and alternative and conventional assumptions]
Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells

- Geometrical tolerances and imperfections
 - Relevant tolerances due to the requirements of serviceability:
 - out-of-roundness (deviation from circularity)
 - eccentricities (deviations from a continuous middle surface in the direction normal to the shell along junctions of plates)
 - local dimples (local normal deviations from the nominal middle surface)
 - Other forms of geometric imperfections:
 - deviations from nominal thickness
 - lack of evenness of supports
 - Material imperfections:
 - residual stresses caused by rolling, pressing, welding, straightening etc.
 - inhomogeneities and anisotropies
 - Wear and corrosion
 - Non-uniformities of loading
 - Residual stresses
Geometrical tolerances and imperfections

Relevant tolerances due to the requirements of serviceability:

• out-of-roundness (deviation from circularity)
• eccentricities (deviations from a continuous middle surface in the direction normal to the shell along junctions of plates)
• local dimples (local normal deviations from the nominal middle surface)

Other forms of geometric imperfections:

• deviations from nominal thickness
• lack of evenness of supports

Material imperfections:

• residual stresses caused by rolling, pressing, welding, straightening etc.
• inhomogeneities and anisotropies
• wear and corrosion
• non-uniformities of loading
• residual stresses

Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells
Ultimate limit states in steel shells

- **LS1: Plastic limit**
 - Identifies the strength of the structure when stability plays no significant role.
- Covers two conditions:
 - tensile rupture or compressive yield through the full thickness
 - development of a plastic collapse mechanism involving bending
- The plastic limit load is also relevant to a buckling strength assessment

\[\lambda = \sqrt{\frac{R_{pl}}{R_{cr}}} \]

- \(R_{pl} \) - the plastic limit load
- \(R_{cr} \) - the elastic critical load

The plastic limit load does not represent the real strength (even for stocky structures): strain hardening of material, stabilizing or destabilizing effects due to change in geometry
Ultimate limit states in steel shells

- LS1: Plastic limit
- Types of analysis:
 - MNA: often underestimates the strength very considerably

Membrane theory calculations:
- If the stress state is entirely axisymmetric, it gives a close approximation to the true condition at plastic collapse
- if the stresses are significantly unsymmetrical, this criterion often provides a very conservative estimate of the plastic limit load
Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells

- **Ultimate limit states in steel shells**
 - LS1: Plastic limit
 - Types of analysis:
 - Linear elastic shell bending theory: This is commonly more conservative than membrane theory calculation (is based on the first yield on the surface)
 - Geometrically nonlinear calculation (GMNA): problems arise over whether the structure displays geometric hardening or geometric softening
 - The plastic limit load should be seen only as the ideal value of the plastic reference resistance
Ultimate limit states in steel shells

- LS2: Cyclic plasticity:
 - Repeated cycles of loading and unloading, eventually leading to local cracking by exhaustion of the energy absorption capacity of the material
 - Low cycle fatigue failure may be assumed to be prevented if the procedures set out in the standard are adopted
- Methods of analysis:
 - expressions in Annex C
 - elastic analysis (LA or GNA)
 - MNA or GMNA and find plastic strains

- LS4: Fatigue:
 - Repeated cycles of increasing and decreasing stress lead to the development of a fatigue crack
- Methods of analysis:
 - expressions in Annex C (using stress concentration factors)
 - elastic analysis (LA or GNA), using stress concentration factors
• **Ultimate limit states in steel shells**

 • **LS3: Buckling:**
 - Caused by loss of stability under compressive membrane or shear membrane stresses in the shell wall, leading to inability to sustain any increase in the stress resultants, possibly causing catastrophic failure

 • Three approaches used in the assessment of buckling resistance:
 - GMNIA analysis
 - MNA/LBA analysis
 - Buckling stresses

 • The strength under LS3 depends strongly on the quality of construction

 • For this purpose, three fabrication quality classes are set out
Design concepts for the limit states design of shells

- The limit state verification should be carried out using one of the following:
 - Stress design:
 - primary
 - secondary
 - Local

- Direct design by application of standard expressions:
 - the limit states may be represented by standard expressions that have been derived from either membrane theory, plastic mechanism theory or linear elastic analysis
 - The membrane theory (Annex A) - primary stresses needed for assessing LS1 and LS3.
 - The plastic design (Annex B) - plastic limit loads for assessing LS1
 - The linear elastic analysis (Annex C) - stresses of the primary plus secondary stress type for assessing LS2 and LS4. An LS3 assessment may be based on the membrane part of these expressions.

- Design by global numerical analysis
Stress resultants and stresses in shells

- **Stresses:**
 - There are eight stress resultants in the shell
 - However, the shear stresses $\tau_{x_n}, \tau_{\theta_n}$ due to the transverse shear forces q_{x_n}, q_{θ_n} are insignificant and they may usually be neglected in design
 - For most design purposes, the evaluation of the limit states may be made using only the six stress resultants in the shell wall $n_x, n_{\theta}, n_{x\theta}, m_x, m_{\theta}, m_{x\theta}$
 - Where the structure is axisymmetric and subject only to axisymmetric loading and support, only n_x, n_{θ}, m_x and m_{θ} need be used

- **Modelling:**
 - Representation by its middle surface
 - Nominal radius of curvature, imperfections neglected (excepting LS3)
 - Eccentricities and steps if they induce significant effects
 - Eccentricity at junctions between shell segments
 - Stringers, corrugations, holes, depending on the conditions

- **Boundary conditions**
Stress resultants and stresses in shells

There are eight stress resultants in the shell.

However, the shear stresses $\tau_{x\theta}$, $\tau_{\theta n}$ due to the transverse shear forces $q_{x\theta}$, $q_{\theta n}$ are insignificant and they may usually be neglected in design.

For most design purposes, the evaluation of the limit states may be made using only the six stress resultants in the shell wall n_x, n_θ, $n_{x\theta}$, m_x, m_θ, $m_{x\theta}$.

Where the structure is axisymmetric and subject only to axisymmetric loading and support, only n_x, n_θ, m_x and m_θ need be used.

Modelling:

Representation by its middle surface

Nominal radius of curvature, imperfections neglected (excepting LS3)

Eccentricities and steps if they induce significant effects

Eccentricity at junctions between shell segments

Stringers, corrugations, holes, depending on the conditions

Boundary conditions

<table>
<thead>
<tr>
<th>Boundary condition code</th>
<th>Simple term</th>
<th>Description</th>
<th>Normal displacements</th>
<th>Vertical displacements</th>
<th>Meridional rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC1r</td>
<td>Clamped</td>
<td>radially restrained meridionally restrained rotation restrained</td>
<td>$w = 0$</td>
<td>$u = 0$</td>
<td>$\beta \phi = 0$</td>
</tr>
<tr>
<td>BC1f</td>
<td></td>
<td>radially restrained meridionally free rotation restrained</td>
<td>$w = 0$</td>
<td>$u = 0$</td>
<td>$\beta \phi \neq 0$</td>
</tr>
<tr>
<td>BC2r</td>
<td>Pinned</td>
<td>radially restrained meridionally free rotation free</td>
<td>$w = 0$</td>
<td>$u \neq 0$</td>
<td>$\beta \phi = 0$</td>
</tr>
<tr>
<td>BC2f</td>
<td></td>
<td>radially free meridionally free rotation free</td>
<td>$w \neq 0$</td>
<td>$u \neq 0$</td>
<td>$\beta \phi \neq 0$</td>
</tr>
</tbody>
</table>

NOTE: The circumferential displacement v is closely linked to the displacement w normal to the surface so separate boundary conditions are not identified in paragraph (3) for these two parameters.

![Diagram showing normal, meridional, and circumferential directions, membrane stresses, and transverse shear stresses.](image)

Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells
Plastic limit state (LS1)

- The plastic reference resistance R_{pl}
- Where it is not possible to undertake a materially non-linear analysis (MNA), the plastic reference resistance R_{pl} may be conservatively estimated from linear shell analysis (LA) conducted using the design values of the applied combination of actions using the following procedure.

- The three points where obtain maximum values for stresses

$$R_{pl} = \sqrt{n_{x,Ed}^2 - n_{x,Ed} n_{\theta,Ed} + n_{\theta,Ed}^2 + 3n_{x\theta,Ed}^2}$$
Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells

• Buckling limit state (LS3)
 • To find out the design buckling resistance
 • Defined as a load factor R applied to the design values of the combination of actions for the relevant load case
 • Different approaches have been proposed, difficult to generalise
 • In EN 1993-1-6, a considerable effort to produce general procedures applicable to all geometries, all loading conditions and all material conditions

• Buckling-relevant boundary conditions

- a) tank without anchors
- b) silo without anchors
- c) tank with anchors
- d) open tank with anchors
- e) laboratory experiment
- f) section of long ring-stiffened cylinder
Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells

- Buckling-relevant geometrical tolerances

<table>
<thead>
<tr>
<th>Fabrication tolerance quality class</th>
<th>Description</th>
<th>Diameter range</th>
<th>Value of $U_{r,\text{max}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>Excellent</td>
<td>$d \leq 0.50\text{m}$</td>
<td>0.014</td>
</tr>
<tr>
<td>Class B</td>
<td>High</td>
<td>$0.50\text{m} < d < 1.25\text{m}$</td>
<td>$0.007 + 0.0093(1.25-d)$</td>
</tr>
<tr>
<td>Class C</td>
<td>Normal</td>
<td>$1.25\text{m} \leq d$</td>
<td>0.007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fabrication tolerance quality class</th>
<th>Description</th>
<th>Diameter range</th>
<th>Maximum permitted accidental eccentricity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>Excellent</td>
<td>$d \leq 0.50\text{m}$</td>
<td>$e_\text{a} \leq 2 \text{mm}$</td>
</tr>
<tr>
<td>Class B</td>
<td>High</td>
<td>$0.50\text{m} < d < 1.25\text{m}$</td>
<td>$e_\text{a} \leq 3 \text{mm}$</td>
</tr>
<tr>
<td>Class C</td>
<td>Normal</td>
<td>$1.25\text{m} \leq d$</td>
<td>$e_\text{a} \leq 4 \text{mm}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fabrication tolerance quality class</th>
<th>Description</th>
<th>Value of $U_{0,\text{max}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>Excellent</td>
<td>0.14</td>
</tr>
<tr>
<td>Class B</td>
<td>High</td>
<td>0.010</td>
</tr>
<tr>
<td>Class C</td>
<td>Normal</td>
<td>0.016</td>
</tr>
</tbody>
</table>
Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells

- **Stress design**
 - **Design values of stresses** $\sigma_{x,Ed}$, $\sigma_{\theta,Ed}$ and $\tau_{x\theta,Ed}$: taken as the key values of compressive and shear membrane stresses obtained from linear shell analysis (LA).
 - **Design resistance (buckling strength):**

\[
\sigma_{x,Rk} = \chi_x f_{y,k}, \quad \sigma_{\theta,Rk} = \chi_{\theta} f_{y,k}, \quad \tau_{x\theta,Rk} = \chi_t f_{y,k} / \sqrt{3}
\]

\[
\chi = \begin{cases}
1 & \text{when } \bar{\lambda} \leq \bar{\lambda}_0 \\
1 - \beta \left(\frac{\bar{\lambda} - \bar{\lambda}_0}{\bar{\lambda}_p - \bar{\lambda}_0} \right) & \text{when } \bar{\lambda}_0 < \bar{\lambda} < \bar{\lambda}_p \\
\frac{\alpha}{\lambda^2} & \text{when } \bar{\lambda}_p \leq \bar{\lambda}
\end{cases}
\]

\[
\lambda_p = \sqrt{\frac{\alpha}{1 - \beta}}
\]

λ_0 - squash limit relative slenderness

\[
\bar{\lambda}_x = \sqrt{\frac{f_{y,k}}{\sigma_{x,Rcr}}} \quad \bar{\lambda}_\theta = \sqrt{\frac{f_{y,k}}{\sigma_{\theta,Rcr}}} \quad \bar{\lambda}_\tau = \sqrt{\frac{f_{y,k}}{\tau_{x\theta,Rcr}}}
\]

- $\gamma_{M1} = \min 1,1$

\[
\sigma_{x,Rd} = \sigma_{x,Rk} / \gamma_{M1}, \quad \sigma_{\theta,Rd} = \sigma_{\theta,Rk} / \gamma_{M1}, \quad \tau_{x\theta,Rd} = \tau_{x\theta,Rk} / \gamma_{M1}
\]
Stress limitation (buckling strength verification)

- The influence of bending stresses may be neglected provided they arise as a result of boundary compatibility effects.
- In the case of bending stresses from local loads or from thermal gradients, special consideration should be given.
- Following checks for the key values of single membrane stress components should be carried out:
 \[
 \sigma_{x,Ed} \leq \sigma_{x,Rd}, \quad \sigma_{\theta,Ed} \leq \sigma_{\theta,Rd}, \quad \tau_{x\theta,Ed} \leq \tau_{x\theta,Rd}
 \]

- For more than one buckling-relevant membrane stress components, interaction check for the combined membrane stress state should be carried out:
 \[
 \left(\frac{\sigma_{x,Ed}}{\sigma_{x,Rd}} \right)^{k_x} + \left(\frac{\sigma_{\theta,Ed}}{\sigma_{\theta,Rd}} \right)^{k_{\theta}} - k_i \left(\frac{\sigma_{x,Ed}}{\sigma_{x,Rd}} \right) \left(\frac{\sigma_{\theta,Ed}}{\sigma_{\theta,Rd}} \right) + \left(\frac{\tau_{x\theta,Ed}}{\tau_{x\theta,Rd}} \right)^{k_{\tau}} \leq 1
 \]
• Buckling design
 • EN 1993-1-6 specifies three approaches that are approved for use in the assessment of buckling resistance:
 • Design by means of a global numerical MNA/LBA analysis
 • Design by means of a global numerical GMNIA analysis
 • Design by means of buckling stresses
Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells

- Buckling design by global numerical MNA/LBA analysis
- It is recommended for many applications
- It has the same basis as the traditional stress design buckling approach
- All relevant combinations of actions causing compressive membrane stresses or shear membrane stresses in the shell wall shall be taken into account
- It involves the following steps, see left hand side figure

\[\lambda_{ov} = \sqrt{\frac{R_{pl}}{R_{cr}}} \]

\[R_k = \chi_{ov} R_{pl} \]

\[R_d = \frac{R_k}{\gamma M1} \]

- \(\lambda_{ov} \) is the overall elastic imperfection factor,
- \(\beta_{ov} \) is the plastic range factor,
- \(\eta_{ov} \) is the interaction exponent and
- \(\lambda_{ov,0} \) is the squash limit relative slenderness
Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells

- Buckling design by global numerical MNA/LBA analysis
 - It is recommended for many applications
 - It has the same basis as the traditional stress design buckling approach
 - All relevant combinations of actions causing compressive membrane stresses or shear membrane stresses in the shell wall shall be taken into account
 - It involves the following steps, see left hand side figure

\[\chi_{ov} = f\left(\lambda_{ov}, \lambda_{ov,0}, \alpha_{ov}, \beta_{ov}, \gamma_{ov}\right) \]

- \(\alpha_{ov} \) is the overall elastic imperfection factor,
- \(\beta_{ov} \) is the plastic range factor,
- \(\eta_{ov} \) is the interaction exponent and
- \(\lambda_{ov,0} \) is the squash limit relative slenderness

The lowest eigenvalue (bifurcation load factor) should be taken as the critical buckling resistance \(R_{cr} \)

\[\tilde{\lambda}_{ov} = \sqrt{\frac{R_{pl}}{R_{cr}}} \]

\[R_k = \chi_{ov} \cdot R_{pl} \]

\[R_d = \frac{R_k}{\gamma_{M1}} \]

Rpl Small displacement theory
LBA plastic limit load
LA

Design of Steel Structures: Strength and Stability of Shells
Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells

- Design by global numerical GMNIA analysis
 - Developed to exploit the full power of modern numerical analysis
 - Application is more complex than for frame or plated structures
 - Several sequence of analysis:
 - LA followed by a LBA to evaluate elastic critical buckling resistance
 - GMNA to identify the elastic-plastic buckling resistance of the perfect structure
 - GMNIA with different imperfection modes (the lowest value is selected)
 - Check the precision of the GMNIA by comparison with test or other relevant data
- Methodology
 - Action combinations causing compressive membrane stresses or shear membrane stresses
 - R_k should be found from the imperfect elastic-plastic critical buckling resistance R_{GMNIA}, adjusted by the calibration factor k_{GMNIA}.
 - The design buckling resistance R_d should then be found using the partial factor γ_{M1}.
Design by global numerical GMNIA analysis

- Developed to exploit the full power of modern numerical analysis
- Application is more complex than for frame or plated structures
- Several sequence of analysis:
 - LA followed by a LBA to evaluate elastic critical buckling resistance
 - GMNA to identify the elastic-plastic buckling resistance of the perfect structure
 - GMNIA with different imperfection modes (the lowest value is selected)
 - Check the precision of the GMNIA by comparison with test or other relevant data

Methodology

- Action combinations causing compressive membrane stresses or shear membrane stresses

\[R_k = k_{\text{GMNIA}} \frac{R_{\text{GMNIA}}}{\gamma_{M1}} \]

C1: The maximum load factor on the load-deformation curve (limit load);
C2: The bifurcation load factor, where this occurs during the loading path before reaching the limit point of the load-deformation curve
C3: The largest tolerable deformation, where this occurs during the loading path before reaching the bifurcation load or the limit load
C4: The load factor at which the equivalent stress at the most highly stressed point on the shell surface reaches the design value of the yield stress

A conservative assessment of \(R_{\text{GMNIA}} \) may be obtained using a GNIA analysis and C4 criterion to determine the lowest load factor \(R_d \).
GMNIA analysis

Allowances for imperfections:
- geometric imperfections: pre-deformations, out-of-roundness, irregularities at and near welds, thickness deviation, etc.
- material imperfections: residual stresses, inhomogeneities, anisotropies

EN 1993-1-6 requires that imperfections are explicitly modelled numerically, not just treated as small perturbations in geometry.

They are introduced by means of equivalent geometric imperfections in the form of initial shape deviations perpendicular to the middle surface of the perfect shell.

The form of the imperfections with the most unfavorable effect should be considered (the most unfavorable effect on the buckling resistance RGMNIA of the shell); if practicable, they must reflect the constructional detailing and the boundary conditions.

The designer should not forget equivalent geometric imperfections must also cover the effects of all other types of imperfections (see above)!
The analysis should be carried out for a sufficient number of different imperfection patterns, and the worst case (lowest value of R_{GMNIA}) should be identified.

The eigen-mode-affine pattern should be used (the critical buckling mode associated with the elastic critical buckling resistance R_{cr} based on an LBA analysis of the perfect shell).

The amplitude of the imperfection form - dependent on the fabrication tolerance quality class

<table>
<thead>
<tr>
<th>Fabrication tolerance quality class</th>
<th>Description</th>
<th>Recommended value of Un1</th>
<th>Recommended value of Un2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>Excellent</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>Class B</td>
<td>High</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td>Class C</td>
<td>Normal</td>
<td>0.025</td>
<td>0.025</td>
</tr>
</tbody>
</table>
Imperfections

- The maximum deviation of the geometry of the equivalent imperfection from the perfect shape $\Delta_{w_{0,\text{eff}}}$ = max ($\Delta_{w_{0,\text{eff},1}}; \Delta_{w_{0,\text{eff},2}}$), where:

$$\Delta_{w_{0,\text{eff},1}} = l_g U_{n_1}$$

$$\Delta_{w_{0,\text{eff},2}} = n_i t U_{n_2}$$

$$l_{g,\theta} = 2,3\left(\frac{t^2}{rt}\right)^{0.25} < r$$

- $n_i = 25$ is a multiplier to achieve an appropriate tolerance level
- t is the local shell wall thickness
- l_g is all relevant gauge lengths (see Dimple tolerances)

l_g relevant gauge lengths
t local shell wall thickness
n_i multiplier to achieve an appropriate tolerance level
U_{n_1}, U_{n_2} dimple imperfection

Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells
Introduction to Design of Shell Structures

Design of Steel Structures: Strength and Stability of Shells

- **GMNIA validation**
 - For each calculated value of the buckling resistance R_{GMNIA}, the ratio of the imperfect to perfect resistance (R_{GMNIA} / R_{GMNA}) should be determined and compared with values of α found using the procedures of 8.5 and Annex D.
 - The reliability of the numerically determined critical buckling resistance R_{GMNIA} should be checked by one of the following methods:
 - by using the same program to calculate values $R_{GMNIA,\text{check}}$, check for other shell buckling cases for which characteristic buckling resistance values $R_{k,\text{known,check}}$ are known;
 - by comparison of calculated values ($R_{GMNIA,\text{check}}$) against test results ($R_{\text{test,known,check}}$).

\[
k_{GMNIA} = \frac{R_{k,\text{known,check}}}{R_{GMNIA,\text{check}}}
\]

\[
k_{GMNIA} = \frac{R_{\text{test,known,check}}}{R_{GMNIA,\text{check}}}
\]
GMNIA validation

- Where a known characteristic value based on existing established theory is used to determine k_{GMNIA}, and the calculated value of k_{GMNIA} lies outside the range $0.8 < k_{GMNIA} < 1.2$, this procedure should not be used.

- The characteristic buckling resistance should be obtained from:

 $$R_k = k_{GMNIA} R_{GMNIA}$$

- R_{GMNIA} is the calculated imperfect elastic-plastic critical buckling resistance;
- k_{GMNIA} is the calibration factor.
ANNEX A - Membrane theory stresses in shells

- Uniform axial load:
 \[F_x = 2\pi r \sigma_x \]

- Axial load from bending:
 \[M = \pi r^2 P_{x,\text{max}} \]
 \[\sigma_x = \pm \frac{M}{\pi r^2 t} \]

- Uniform shear from torsion:
 \[M_t = 2\pi r^2 P_\theta \]
 \[\tau = \frac{M_t}{2\pi r^2 t} \]
ANNEX B - Additional expressions for plastic collapse resistances

Cylinder: Radial line load

\[l_o = 0.975 \sqrt{rt} \]

\[\frac{P_{nR}}{2l_o} = f_y \frac{t}{r} \]

Cylinder: Radial line load and axial load

\[l_m = s_m l_o \]

\[\frac{P_{nR}}{2l_m} = f_y \frac{t}{r} \]

\[s_m = A + \sqrt{A^2 + 4(1 - s_x^2)} \]

\[A = +/- s_x - 1.50 \]

\[s_x = \frac{P_x}{f_y t} \]

\[l_o = 0.975 \sqrt{rt} \]

P_{nR} - plastic resistance (force per unit circumference)
Cylinder, clamped: axial loading

\[\sigma_{MTx} = \frac{P_x}{t} \]

Cylinder, pinned: axial loading

\[\sigma_{MTx} = \frac{P_x}{t} \]
ANNEX D - Expressions for buckling stress design

- Unstiffened cylindrical shells of constant wall thickness
 - Meridional (axial) compression
 - Critical meridional buckling stresses
 - Meridional buckling parameters
 - Circumferential (hoop) compression
 - Critical circumferential buckling stresses
 - Circumferential buckling parameters
 - Shear
 - Critical shear buckling stresses
 - Shear buckling parameters

- Combinations of meridional (axial) compression, circumferential (hoop) compression and shear
Introduction to Design of Shell Structures
Finite Element Application

- Principles, simplified and advanced models, concentration of stresses, stiffening

Hand calculation
- Formulas for:
 - Bifurcation load
 - Plastic limit
 - Imperfection sensitivity
 - Elastic plastic interaction
 - Interaction between different stress components

Simple computer calculations
- Computational evaluations:
 - Bifurcation load
 - Plastic limit
 - Interaction between different stress components
 - Imperfection sensitivity
 - Elastic plastic interaction

Complete computer calculations
- Computational evaluations:
 - Bifurcation load
 - Plastic limit
 - Perfect structure strength
 - Imperfect structure strength

- LA
- LBA
- GNA
- MNA
- GMNA
- GNIA
- GMNIA
Introduction to Design of Shell Structures

Finite Element Application

• Simplified FEM model
 • Global analysis
 • A simplified bar model using 1D beam finite elements, with or without the account of global imperfection, using an elastic material law.
 • Aim of analysis – find-out the internal forces needed for:
 • The global check of the tower capacity;
 • Refined local analysis of the relevant tower segments (between two consecutive flange that assure the appropriate boundary condition, radial restrained)

• Local analysis of a tower segment
 • The 3D shell model should be build using 2D finite elements (plane), that can be: either Homogeneous shell, either Membranes
Simplified FEM model

Local analysis of a tower segment

The 3D shell model should be build using 2D finite elements (plane), that can be: either Homogeneous shell, either Membranes

The geometry can be perfect / ideal or taking into account of the prescribed relevant geometrical imperfection:

- out-of-roundness (deviation from circularity),
- eccentricities (deviations from a continuous middle surface in the direction normal to the shell along junctions of plates),
- local dimples (local normal deviations from the nominal middle surface).
Introduction to Design of Shell Structures

Finite Element Application

• Advanced FEM Model
 • Modelling the entire structure with 2D finite elements with a special attention of details (connection flanges, welds connection, etc);

• Material behavior:
 • Elastic
 • Plastic

• Geometry:
 • Ideal
 • Imperfect

• Finite elements types:
 • Homogenous shell
Introduction to Design of Shell Structures

Finite Element Application

- Geometry and state of stress
 - Homogeneous shell with bending stiffness, sections consist of a shell thickness, material name, section Poisson's ratio.

- Membranes represent thin surfaces in space that offer strength in the plane of the surface but have no bending stiffness. Membrane sections consist of a material name, membrane thickness, section Poisson's ratio.
Introduction to Design of Shell Structures

Finite Element Application

- Material behavior law
 - Elastic
 - Elastic – Plastic
 - Linear
 - Multi-linear

- Continuous
 - Powell,
 - Ramberg-Osgood
Load cases

- The load cases shall be determined from the combination of operational modes or other design situations, such as specific assembly, erection or maintenance conditions, with the external conditions.

- All relevant load cases with a reasonable probability of occurrence shall be considered, together with the behavior of the control and protection system.

The design load cases used (IEC 61400-1:2005) to verify the structural integrity of a wind turbine shall be calculated by combining:

- normal design situations and appropriate normal or extreme external conditions;
- fault design situations and appropriate external conditions;
- transportation, installation and maintenance design situations and appropriate external conditions.
Load cases and design situations

- Load cases and assumptions for global analysis
 - IEC 61400-1:2005
 - Dead loads - Self-weight: tower head; tower body, installation etc.
 - Wind action (EN1991-1-4)
 - Seismic loads
 - Temperature
 - Ice

- Design situations
 - Power production
 - Power production plus occurrence of fault or loss of electrical network connection
 - Start up
 - Normal shut down
 - Emergency shut down
 - Parked (standstill or idling)
 - Parked plus fault conditions
 - Transport, assembly, maintenance and repair
Introduction to Design of Shell Structures

Finite Element Application

- Wind action using different load situation:
 - Global analysis to find-out the internal forces
 - Load of wind on tower (hub)
 - Simplified distribution (a_2)
 - Surface distribution (a_1)
 - Load from turbine’s machinery
 - Concentrated force and moment
 - Equivalent load for buckling verification
 - Axisymmetric pressure distribution

![Diagram](attachment://diag.png)
Introduction to Design of Shell Structures

Finite Element Application

- **Solver technique**
 - Pre-critical analysis and point results (Newton-Raphson)
 - Post-critical analysis with deformation-to-failure (displacement control, arc-length, modal analysis)
 - The Static Riks step (based on arc-length solver) is able to find solution during unstable loading response, when Static General step (based on N-R solver) stops at limit load.
Introduction to Design of Shell Structures

Finite Element Application

Eigenvalue results axial compression
different discretization levels

- Eigenvalue results pure bending
different discretization levels

- Eigenvalue results axial compression
different boundary conditions

Graphical representation of shell structure models with labels and annotations regarding geometric and material properties, boundary conditions, and number of elements.
Stress concentrations

- Modelling stress concentration (door opening)
- Around door opening appear elevated values of the membrane stresses. This stresses that develop within a band of width of $2 \sqrt{rt}$ adjacent to a restrained edge need not be consider in buckling calculations.
Introduction to Design of Shell Structures
Finite Element Application and Case Study

• **Study Case**
 • General geometrical data
 • Total height: 96.15 m
 • Shape: cylinder (conic last segment)
 stepwise variable wall thickness
 • Base diameter: 4300 mm (t=39 mm)
 • Top diameter: 2955 mm (t=12 mm)
 • Divided in 5 segments of ~ 20m length
 • Detailing
 • Flange bolted connection (M48 - M27)
 between segments and welded connection
 between shells of different thickness
Introduction to Design of Shell Structures
Finite Element Application and Case Study

- Study Case
 - Door opening details
 - Ventilation opening
Introduction to Design of Shell Structures
Finite Element Application and Case Study

• Study Case
 • Numerical models
 • Simplified bar model
 • Refined local segment model
 • Relevant segments
 • Door opening segment
 • Entire model

• Verification procedures
 • Analytical determination of moment capacity (LA) $\rightarrow M_{Rd}$
 • Characteristic buckling resistance (LBA + MNA)
 • The plastic reference resistance $\rightarrow R_{pl}$
 • The elastic critical buckling resistance $\rightarrow R_{cr}$
 • The overall buckling reduction factor
 • Characteristic buckling resistance (GMNIA)
 • Calibration factor

\[R_k = \chi_{ov} R_{pl} \]
\[R_k = k_{GMNIA} R_{GMNIA} \]
Introduction to Design of Shell Structures
Finite Element Application and Case Study

• Study Case
 • Expressions for buckling stress design
 • Unstiffened cylindrical shells
 • Critical meridional buckling stresses

\[\omega = \frac{l}{r} \sqrt{\frac{r}{t}} = \frac{l}{\sqrt{rt}} = \frac{20000}{\sqrt{2150 \cdot 13,14}} = 119 \]

\[\sigma_{x,\text{Rcr}} = 0,605 \cdot E \cdot c_x \cdot \frac{t}{r} = 0,605 \cdot 2,1 \cdot 10^5 \cdot 0,943 \cdot \frac{12}{2150} = 669 \text{ N/mm}^2 \]

\[\frac{r}{t} = \frac{2150}{13,14} = 164 \Rightarrow c_x = c_{x,N} = 1 + \frac{0,2}{c_{xb}} \left(1 - 2 \omega \frac{t}{r} \right) \]

\[c_{x,N} = 1 + \frac{0,2}{1} \left(1 - 2 \cdot 119 \frac{12}{2150} \right) = 0,9434 \geq 0,6 \]
Introduction to Design of Shell Structures
Finite Element Application and Case Study

• Study Case
 • Expressions for buckling stress design (hand calculation)
 • Unstiffened cylindrical shells
 • Meridional buckling parameters

\[
\alpha_x = \frac{0.62}{1 + 1.91 \left(\frac{\Delta w_k}{t} \right)^{1.44}} = \frac{0.62}{1 + 1.91 \left(\frac{10.51}{13.14} \right)^{1.44}} = 0.25999
\]

\[
\Delta w_k = \frac{1}{Q} \sqrt{\frac{r}{t}} \cdot \frac{1}{Q} = \frac{1}{16} \sqrt{2150 \cdot 13.14} = 10.51
\]

\[
\lambda_{x0} = 0.20 \\
\beta = 0.60 \rightarrow \lambda_p = 0.806 \quad \lambda_x = 0.728 \leq 0.806 \\
\eta = 1.0
\]

\[
\chi = 1 - 0.60 \cdot \left(\frac{0.728 - 0.2}{0.806 - 0.2} \right) = 0.477 \Rightarrow \sigma_{x,Rk} = 0.477 \cdot 355 = 169 \frac{N}{mm^2}
\]
Introduction to Design of Shell Structures
Finite Element Application and Case Study

• Study Case
 • Expressions for buckling stress design (hand calculation)
 • Unstiffened cylindrical shells
 • Meridional stresses

\[\sigma_{x,Ed}^N = -\frac{F_x}{2\pi rt} = \frac{1770 \cdot 10^3}{2\pi \cdot 2150 \cdot 12} = 10.92 \text{ N/mm}^2 \]

\[\sigma_{x,Ed}^M = \pm \frac{M}{\pi r^2 t} = \frac{17702 \cdot 10^6}{\pi \cdot 2150^2 \cdot 12} = 102 \text{ N/mm}^2 \]
Introduction to Design of Shell Structures
 Finite Element Application and Case Study

• Study Case
 • Expressions for buckling stress design (hand calculation)
 • Unstiffened cylindrical shells
 • Critical circumferential buckling stresses

\[\omega = \frac{l}{r} \sqrt{\frac{r}{t}} = \frac{l}{\sqrt{rt}} = \frac{20000}{\sqrt{2150 \cdot 13.14}} = 119 \]

\[\sigma_{\vartheta, R_{cr}} = 0.92 \cdot \frac{E \cdot c_{\vartheta}}{\omega} \cdot \frac{t}{r} = 0.92 \cdot 2 \cdot 10^5 \cdot \frac{1}{119} \cdot \frac{12}{2150} = 9.06 \frac{N}{mm^2} \]

\[1.63 \cdot \frac{r}{t} = 267.32 \]
Introduction to Design of Shell Structures

Finite Element Application and Case Study

- Study Case
 - Expressions for buckling stress design (hand calculation)
 - Unstiffened cylindrical shells
 - Circumferential buckling parameters

\[\alpha_\theta = 0,5 \quad \text{(Class C)} \]

\[\bar{\lambda}_{\theta 0} = 0,40 \]

\[\beta = 0,60 \quad \Rightarrow \quad \bar{\lambda}_p = 1,12 \quad \bar{\lambda}_\theta = 6,26 \geq 1,12 \]

\[\eta = 1,0 \]

\[\chi = \frac{\alpha}{\bar{\lambda}^2} = \frac{0,5}{6,26^2} = 0,0128 \Rightarrow \sigma_{\theta, Rk} = 0,0128 \cdot 355 = 4,53 \frac{N}{mm^2} \]

\[\sigma_{\theta, Ed} = p_n \frac{r}{t} = 1,5 \cdot 1,102 \cdot 10^{-3} \frac{2150}{12} = 0,296 \frac{N}{mm^2} \]
Introduction to Design of Shell Structures
Finite Element Application and Case Study

• Study Case – Complete Model
 • Imperfection amplitude

\[l_{gx} = 4\sqrt{rt} = 4 \cdot \sqrt{4300 \cdot 12} = 908.63 \text{ mm} \]

\[\Delta w_{0,\text{eff},1} = l_{gx} U_{n1} \]

<table>
<thead>
<tr>
<th>Fabrication tolerance quality class</th>
<th>Description</th>
<th>Value of (U_{n1})</th>
<th>Geometric tolerance normal to the shell surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>Excellent</td>
<td>0.010</td>
<td>9.086</td>
</tr>
<tr>
<td>Class B</td>
<td>High</td>
<td>0.016</td>
<td>14.538</td>
</tr>
<tr>
<td>Class C</td>
<td>Normal</td>
<td>0.025</td>
<td>22.7158</td>
</tr>
</tbody>
</table>
Introduction to Design of Shell Structures

Finite Element Application and Case Study

• Study Case – Complete Model
 • LA / MNA at reference load results
 • Local plastic zones around connecting flanges
 • LBA results $R_{cr} = 5,877$

<table>
<thead>
<tr>
<th>Bottom section</th>
<th>Axial force [kN]</th>
<th>Shear force [kN]</th>
<th>Bending moment [kNm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>4323</td>
<td>1260</td>
<td>80088</td>
</tr>
<tr>
<td>MNA</td>
<td>4323</td>
<td>1260</td>
<td>80088</td>
</tr>
</tbody>
</table>
Introduction to Design of Shell Structures
Finite Element Application and Case Study

• Study Case – Complete Model
 • MNA $R_{pl} = 3.07$
 • GMNA $R_{pl} = 1.77$
 • GMNIA $R_{pl} = 1.49$

<table>
<thead>
<tr>
<th>Reactions at $R = 1$</th>
<th>Axial force [kN]</th>
<th>Shear force [kN]</th>
<th>Bending moment [kNm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4323</td>
<td>1260</td>
<td>80088</td>
</tr>
</tbody>
</table>
Introduction to Design of Shell Structures

Finite Element Application and Case Study

- **Study Case – Complete Model**
 - Description of the complete shell model
 - LBA - Linear elastic bifurcation analysis
 - The elastic critical buckling load factor $R_{cr} = 5,8772$
 - Imperfection shape
 - MNA – Material nonlinear analysis
 - The plastic reference load factor $R_{pl} = 3,07$

- The overall relative slenderness λ_{ov} for the complete shell

$$\lambda_{ov} = \sqrt{\frac{3,07}{5,877}} = 0,522$$

- The overall buckling reduction factor

- Annex D EN1993-1-6 gives values for:
 - α_{ov} is the overall elastic imperfection factor
 - β_{ov} is the plastic range factor $= 0,60$
 - η_{ov} is the interaction exponent $= 1,0$
Introduction to Design of Shell Structures

Finite Element Application and Case Study

• Study Case – Refined door opening segment

 - Numerical model

<table>
<thead>
<tr>
<th>Section</th>
<th>Axial force [kN]</th>
<th>Shear force [kN]</th>
<th>Bending moment [kNm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper section</td>
<td>4413</td>
<td>1231</td>
<td>73988</td>
</tr>
<tr>
<td>Bottom section</td>
<td>4413</td>
<td>1231</td>
<td>88514</td>
</tr>
</tbody>
</table>

LBA results \(R_{cr} = 12.248 \)
Introduction to Design of Shell Structures

Finite Element Application and Case Study

- Study Case – Refined door opening segment
 - LA Results
 - GMNA Results
Introduction to Design of Shell Structures

Finite Element Application and Case Study

- Study Case – Refined door opening segment
- Numerical model

<table>
<thead>
<tr>
<th>Section</th>
<th>Axial force [kN]</th>
<th>Shear force [kN]</th>
<th>Bending moment [kNm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper section</td>
<td>1586</td>
<td>409</td>
<td>13055</td>
</tr>
<tr>
<td>Bottom section</td>
<td>2015</td>
<td>666</td>
<td>23897</td>
</tr>
</tbody>
</table>

- Transformation of typical wind pressure load distribution

\[
q_{eq} = k_w q_{max} = 0.541 \cdot 1430 \cdot 1.5 = 1102 \frac{N}{m^2}
\]

\[
k_w = 0.46 \left(1 + 0.1 \sqrt{\frac{c_0 \cdot r}{\omega \cdot t}} \right) = 0.46 \left(1 + 0.1 \sqrt{\frac{1}{119} \cdot \frac{2150}{13.14}} \right) = 0.514
\]

\[
\omega = \frac{l}{r} \sqrt{\frac{t}{l}} = \frac{126000}{\sqrt{2150 \cdot 13.14}} = 119
\]

- LA \(R_{pl} = (126/355) = 2.82 \)
Introduction to Design of Shell Structures
Finite Element Application and Case Study

- **Study Case – Refined door opening segment**
 - LBA Results
 - GMNIA results
 - Imperfection affine first buckling mode
 - Amplitude of imperfection 23mm and 17mm corresponding to normal and high tolerance

<table>
<thead>
<tr>
<th>Section</th>
<th>R_{cr}</th>
<th>k_{GMNIA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without EWL</td>
<td>6,8006</td>
<td></td>
</tr>
<tr>
<td>With EWL</td>
<td>6,8003</td>
<td></td>
</tr>
<tr>
<td>Quality class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High (~17 mm)</td>
<td>1,79</td>
<td></td>
</tr>
<tr>
<td>Normal (~23 mm)</td>
<td>1,72</td>
<td></td>
</tr>
</tbody>
</table>