Fire Design of Aluminium Structures

František Wald
Czech Technical University in Prague
Objectives of the lecture

- Summary of structural aluminium and steel design at ambient temperature
- Properties of structural aluminium
- Particularities of aluminium fire design
Outline of the lecture

- Introduction
- Thermal properties
- Mechanical properties
- Transfer of heat
 - Unprotected elements
 - Protected elements
- Elemental analyses
 - Classification of sections
 - Columns
 - Beams
 - Critical temperature
- Summary
 - Worked example
Structural aluminium/steel behaviour?

Ambient temperature

- Stress-strain diagram
 - No yield stress
 - Modulus of elasticity 1/3 of steel
 - Lower ductility
- Different production of sections
 - Majority wrought aluminium
 - Buckling curves more favourable
- Heat affected zones HAZ
 - Reduction of material properties
Structural aluminium/steel design?

Ambient temperature

- Different procedures
 - HAZ for resistance
 - HAZ for stability
 - Lugs for stiffening
 - Material model
Structural aluminium/steel design?

Ambient temperature

- Standards different structure
- EN 1999 Design of Aluminium Structures:
 - EN 1999-1-1 General structural rules
 - EN 1999-1-2 Structural fire design
 - EN 1999-1-3 Structures susceptible to fatigue
 - EN 1999-1-4 Cold-formed structural sheeting.
 - EN 1999-1-5 Shell structures
Relative thermal elongation

- As a function of the temperature

\[\frac{\Delta l}{l} \] vs. \(\theta_{al} \) °C

Graph showing the relative thermal elongation as a function of temperature.
Relative thermal elongation

- Mathematical model

\[
\text{for } 0.0^\circ \text{C} < \theta_{al} \leq 500.0^\circ \text{C}
\]

\[
\frac{\Delta l}{l} = 0.1 \cdot 10^{-7} \theta_{al}^2 + 2.25 \cdot 10^{-6} \theta_{al} - 4.5 \cdot 10^{-4}
\]

where

\[
l \rightarrow \text{is the length at } 20.0^\circ \text{C}
\]

\[
\Delta l \rightarrow \text{is the temperature induced elongation}
\]
Specific heat of aluminium

- As a function of the temperature

![Graph showing specific heat of aluminium as a function of temperature.](image-url)
Specific heat of aluminium

- Mathematical model

\[c_{al} = 0.41 \cdot \theta_{al} + 903 \cdot (J/kg^\circ C) \]

\[\text{for } 0^\circ C < \theta_{al} < 500^\circ C \]

![Graph showing specific heat of aluminium vs temperature](image-url)
Thermal conductivity of aluminium alloy λ_{al}

- The thermal conductivity for $0 \, ^\circ C < \theta_{al} < 500 \, ^\circ C$

![Graph showing thermal conductivity vs. temperature](image-url)

- Series 1000, 3000 to 6000
- Series 12000, 4000, 5000 to 7000
Thermal conductivity

- Mathematical model
 - a) for alloys in 3xxx and 6xxx series:
 \[\lambda_{al} = 0.07 \cdot \theta_{al} + 190 \, (W/m \cdot K) \]
 - b) for alloys in 5xxx and 7xxx series:
 \[\lambda_{al} = 0.1 \cdot \theta_{al} + 140 \, (W/m \cdot K) \]
Mechanical properties of aluminium alloys

- At 20 °C should be taken as those given in EN 1999-1-1 for normal temperature design
- For up to 2 hours thermal exposure period
- 0.2% proof strength at elevated temperature

\[f_{o,\theta} = k_{o,\theta} \cdot f_o \]

where

- \(f_{o,\theta} \) is 0.2 proof strength at elevated temperature
- \(f_o \) is 0.2 proof strength at room temperature according to EN 1999-1-1
0,2 % proof strength at elevated temperature

- 0,2% proof strength ratios $k_{o,\theta}$
 - Two tables
 - Lower limits

<table>
<thead>
<tr>
<th>Aluminium alloy temperature °C</th>
<th>20</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>550</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower limit values</td>
<td>1,00</td>
<td>0,90</td>
<td>0,75</td>
<td>0,50</td>
<td>0,23</td>
<td>0,11</td>
<td>0,06</td>
<td>0</td>
</tr>
</tbody>
</table>
0,2 \% proof strength at elevated temperature

- 0,2\% proof strength ratios $k_{0,\theta}$
- Two tables for different alloys and tempers
0,2 % proof strength at elevated temperature

- 0,2 % proof strength ratios $k_{o,\theta}$
- Two tables for different alloys and tempers

\[
\frac{E_{al,\theta}}{E_{al}} \quad k_{o,\theta}
\]

\[
\begin{array}{cccccc}
\theta_{al} / ^{\circ}C & 5005-O & 5083-O & 5454-O & 5052-H34 & 5083-H12 & 5005-H14 & 5454-H34 \\
50 & 1.0 & 0.9 & 0.7 & 0.5 & 0.3 & 0.1 & 0.0 \\
100 & 0.9 & 0.8 & 0.7 & 0.5 & 0.3 & 0.1 & 0.0 \\
200 & 0.8 & 0.7 & 0.6 & 0.4 & 0.2 & 0.0 & 0.0 \\
300 & 0.7 & 0.6 & 0.5 & 0.3 & 0.1 & 0.0 & 0.0 \\
400 & 0.6 & 0.5 & 0.4 & 0.2 & 0.0 & 0.0 & 0.0 \\
500 & 0.5 & 0.4 & 0.3 & 0.1 & 0.0 & 0.0 & 0.0 \\
\end{array}
\]
Exposure period

0,2 proof strength $f_{o,\theta}$ N/mm2

- 160 °C
- 200 °C
- 250 °C
- 300 °C

Time of exposure log min

prEN 1999-1-2: 2004
Modulus of elasticity $E_{al, \theta}$

- Ratio $E = E_{al, \theta}/E_{al}$ for aluminium alloys at elevated temperature θ_{al} °C

<table>
<thead>
<tr>
<th>Aluminium alloy temperature, θ (°C)</th>
<th>Modulus of elasticity, $E_{al, \theta}$ (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>70 000</td>
</tr>
<tr>
<td>50</td>
<td>69 300</td>
</tr>
<tr>
<td>100</td>
<td>67 900</td>
</tr>
<tr>
<td>150</td>
<td>65 100</td>
</tr>
<tr>
<td>200</td>
<td>60 200</td>
</tr>
<tr>
<td>250</td>
<td>54 600</td>
</tr>
<tr>
<td>300</td>
<td>47 600</td>
</tr>
<tr>
<td>350</td>
<td>37 800</td>
</tr>
<tr>
<td>400</td>
<td>28 000</td>
</tr>
<tr>
<td>550</td>
<td>0</td>
</tr>
</tbody>
</table>
Modulus of elasticity $E_{al,\theta}$

- Ratio $E = E_{al,\theta}/E_{al}$ for aluminium alloys at elevated temperature θ_{al} °C
Assessment 1

- What thermal exposure is expected for aluminium alloys during fire?
- When starts at elevated temperature the reduction of 0.2% proof strength?
Unprotected aluminium temperature development

- Simple analytical model
- Step by step procedure (the lumped mass method)

\[\Delta \theta_{al}(t) = k_{sh} \frac{1}{c_{al} \rho_{al}} \frac{A_m}{V} \dot{h}_{net}\Delta t \]

where

- \(k_{sh} \) is the correction factor for the shadow effect from 4.2.3.1 (2)
- \(A_m/V \) is the section factor for unprotected aluminium members \((m^{-1})\)
- \(\dot{h}_{net} \) is the design value of the net heat flux per unit area, see EN 1991-1-2

\(\Delta t \) should not be taken as more than 5 s

\(A_m/V \) the section factor should not be taken as less than 10 \(m^{-1} \)
Section factor for unprotected aluminium members

- Open section exposed to fire on all sides:
 \[\frac{A_m}{V} = \frac{\text{perimeter}}{\text{cross-section area}} \]

- Tube exposed to fire on all sides:
 \[\frac{A_m}{V} = \frac{1}{t} \]
Section factor for unprotected aluminium members

- Open section exposed to fire on three sides:
 \[A_m \approx \frac{A_m}{V} = \frac{\text{surface exposed to fire}}{\text{cross-section area}} \]

- Hollow section (or welded box section of uniform thickness) exposed to fire on all sides:
 \[A_m \approx \frac{1}{t} \]

- I section flange exposed to fire on three sides:
 \[A_m \approx \frac{A_m}{V} = \frac{b + 2t_f}{bt_f} \]

- Box section exposed to fire on all sides:
 \[A_m \approx \frac{2b+h}{V} \]

Summary

- Transfer of heat
 - Unprotected
 - Protected

Elemental analyses
- Classification
- Beams
- Columns
- Critical temp.

Notes

23
Section factor for unprotected aluminium members

<table>
<thead>
<tr>
<th>Angle (or any open section of uniform thickness) exposed to fire on all sides:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\frac{A_m}{V} = \frac{2}{t}]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I section with box reinforcement exposed to fire on all sides:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\frac{A_m}{V} = \frac{2b+h}{\text{cross-section area}}]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flat bar exposed to fire on all sides:</th>
</tr>
</thead>
</table>
| \[\frac{A_m}{V} = \frac{2b+2t}{bt} \]
If \(t \ll b \): \(\frac{A_m}{V} \approx \frac{2}{t} \) |

<table>
<thead>
<tr>
<th>Flat bar exposed to fire on three sides:</th>
</tr>
</thead>
</table>
| \[\frac{A_m}{V} = \frac{b+2t}{bt} \]
If \(t \ll b \): \(\frac{A_m}{V} \approx \frac{1}{t} \) |
Grooves with gap in the surface

- The calculation of the exposed surface area
- Grooves with gap in the surface less than 20 mm should not be included in the exposed surface area.
- Grooves with gap in the surface > 20 mm, the area of the groove should be included in the area of the exposed area
Surface emissivity ε_m

- The values of $\dot{h}_{\text{net,d}}$ should be obtained from EN 1991-1-2 using

\[
\varepsilon_m = 0.3 \text{ for clean uncovered surfaces} \\
\varepsilon_m = 0.7 \text{ for painted and covered (e.g. sooted) surfaces}
\]
Surface emissivity ε_m

Element temperature, °C

Section factor $A m/ V = 25$

Time, min

$\varepsilon_m = 0.3$

$\varepsilon_m = 0.7$
Aluminium element insulated by fire protection material

For a uniform temperature distribution in a cross-section, the temperature increase

\[\Delta \theta_{al}(t) = \frac{\lambda_p}{c_{al} \rho_{al}} \frac{A_p}{V} \left(1 \right) \left(\theta(t) - \theta_{al(t)} \right) \Delta t - \left(e^{\phi/10} - 1 \right) \Delta \theta(t) \]

but \(\Delta \theta_{al(t)} \geq 0 \)

in which:

\[\phi = \frac{c_p \rho_p d_p}{c_{al} \rho_{al}} \frac{A_p}{V} \]

where

\[\frac{A_p}{V} \] is the section factor for aluminium members insulated by fire protection material \((m^{-1})\)

\(\theta(t) \) is the ambient gas temperature at time \(t \) \(^{\circ}C\)

\(\theta_{al(t)} \) is the aluminium temperature at time \(t \) \(^{\circ}C\)

\(\Delta \theta(t) \) is the increase of the ambient temperature during the time interval \(\Delta t \) \(^{\circ}C\)
Section factor A_p/V
for insulated members

<table>
<thead>
<tr>
<th>Sketch</th>
<th>Description</th>
<th>Section factor (A_p/V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contour encasement of uniform thickness, exposed to fire on four sides.</td>
<td>$\frac{\text{aluminium perimeter}}{\text{aluminium cross - section area}}$</td>
</tr>
<tr>
<td></td>
<td>Hollow encasement of uniform thickness, exposed to fire on four sides.</td>
<td>$\frac{2(b + h)}{\text{aluminium cross - section area}}$</td>
</tr>
</tbody>
</table>
Section factor A_p/V

for insulated members

| | Contour encasement of uniform thickness, exposed to fire on three sides. | aluminium perimeter - b
aluminium cross - section area |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | Hollow encasement of uniform thickness, exposed to fire on three sides. | $2h + b$
aluminium cross - section area |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Design tools TALAT

- Reference thickness of fire protection
 \[d_p = k d_{p,\text{ref}} \quad (k \text{ based on material form 0.4 to 1.4}) \]
Assessment 2

- What differences are for step by step procedure of aluminium compare to steel?
- Describe the section factor A_p/V for insulated member by bords?
- What surface emissivity ε_m is expected for clean uncovered surface?
Structural fire design

- **Simple calculation models**
 \[E_{fi,d} \leq R_{fi,d,t} \]
 - \(E_{fi,d} \) is the design effect of actions for the fire design situation
 - \(R_{fi,d,t} \) is the design resistance of the aluminium structure or structural member, for the fire design situation

- **Advanced calculation models**
 - The development and distribution of the temperature within structural members (thermal response model);
 - The mechanical behaviour of the structure or of any part of it (mechanical response model).
 - Validation of advanced calculation models
Effect of actions

- For time $t = 0$
- Using combination factors $\psi_{1,1}$ or $\psi_{2,1}$ according to EN1991-1-2

$$E_{f_i,d} = \eta_i E_d$$

Where E_d is the design value of the corresponding force or moment for normal temperature design

- As a simplification the recommended value of $\eta_i = 0.65$ may be used
 (Except areas susceptible to accumulation of goods, including access areas.)
Classification of cross-sections

- Classified as for normal temperature design
- Based on the same relative drop in the 0.2% proof strength and modulus of elasticity

- Actual drop in modulus of elasticity
 - Classification of the section changes
 - Larger capacity value of the section
\[\varepsilon = \sqrt{250 / f_o} \]

- To introduce different materials
- Plate slenderness

\[\bar{\lambda}_p = \frac{b}{28,4 \cdot t \cdot \varepsilon \cdot \sqrt{k_\sigma}} = \frac{b}{t \sqrt{\frac{\pi^2}{12 \cdot f_o \cdot (1 - \mu^2)} \sqrt{E} \cdot \varepsilon \cdot \sqrt{k_\sigma}}} = \]

\[= \frac{b}{t \sqrt{\frac{\pi^2}{12 \cdot f_o \cdot (1 - \mu^2)} \sqrt{E} \cdot \varepsilon \cdot \sqrt{k_\sigma}}} = 0,0620 \frac{b}{t \sqrt{\frac{235E}{f_o} \sqrt{k_\sigma}}} = 0,950 \frac{b}{t \sqrt{\frac{E}{f_o} \sqrt{k_\sigma}}} \]

- \(t \) is plate thickness
- \(b \) is width,
- \(\mu \) is Poisson ratio
- \(E \) is *modulus of elasticity*
- \(f_o \) is 0,2 % proof strength
Reduction of ε coefficient

- At elevated temperature

\[
\sqrt{\frac{E_\theta}{f_{o,\theta}}} = \sqrt{\frac{k_{E,\theta}}{k_{o,\theta}}} \frac{E}{f_o} = \sqrt{\frac{k_{E,\theta}}{k_{o,\theta}}} \sqrt{\frac{E}{f_o}}
\]

\[
\sqrt{\frac{k_{E,\theta}}{k_{y,\theta}}} \sqrt{\frac{E}{f_y}} \approx 1,00 \sqrt{\frac{E}{f_y}}
\]
Reduction of ε coefficient for structural steel

![Graph showing the reduction of ε coefficient for structural steel. The graph plots steel temperature against ε for different conditions: effective yield strength, proportional limit, and a constant value of 0.85 in EN 1993-1-2.]
Reduction of ε coefficient for steel

- Currently for steel

\[\sqrt{\frac{k_{E,\theta}}{k_{y,\theta}}} \sqrt{\frac{E}{f_y}} \approx 0.85 \sqrt{\frac{E}{f_y}} \]
Reduction of ε coefficient for aluminium

$$\varepsilon = \alpha_\theta \sqrt{\frac{250}{f_0}}$$

at elevated temperature

$$\alpha_\theta = \sqrt{\frac{k_{E,al,\theta}}{k_{o,\theta}}} \sqrt{\frac{E_{al,\theta}}{E_{al}}} \sqrt{\frac{f_{o,\theta}}{f_o}}$$
Reduction of ε coefficient for aluminium

$$\varepsilon = \alpha_0 \sqrt{\frac{250}{f_0}}$$
Reduction of ε coefficient for aluminium

\[\varepsilon = \alpha_\theta \sqrt{\frac{250}{f_0}} \]

<table>
<thead>
<tr>
<th>Aluminium temperature $^\circ$C</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN AW-6063; O</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>EN AW-5052; H36</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>EN AW-5154; O</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>EN AW-6063; H34</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>EN AW-6063; T5</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>EN AW-5052; H24</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>EN AW-5154; H32</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>EN AW-5088; O</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
<td>3.0</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Tension members

- The design resistance

\[N_{fi,t,Rd} = \sum A_i k_{o,\theta,i} f_o \gamma_{M,fi} \]

where

- \(A_i \) is an elemental area of the net cross-section with a temperature \(\theta_i \), including a deduction if required to allow for the effect of HAZ softening.

The deduction is based on the reduced thickness of \(\rho_{o,HAZ} \cdot t \)

- \(k_{o,\theta,i} \) is the reduction factor for the effective 0,2 % proof strength at temperature \(\theta_i \).
Beams

The design $M_{fi,t,Rd}$ of a cross-section in class 1, 2, 3 or 4 with a uniform temperature distribution at time t

$$M_{fi,t,Rd} = k_{o,\theta} M_{Rd} (\gamma_{Mx}/\gamma_{M,fi})$$

where

M_{Rd} is the moment resistance of the cross-section for normal temperature design. M_{Rd} is either $M_{c,Rd}$ or $M_{u,Rd}$

γ_{Mx} is the material coefficient according to EN 1999-1-1. γ_{M1} is used in combination with $M_{c,Rd}$ and γ_{M2} is used in combination with $M_{u,Rd}$

The design resistance $M_{fi,t,Rd}$ is given by the combination of M_{Rd} and γ_{Mx} which gives the lowest capacity.
Columns

The design buckling resistance $N_{b,fi,t,Rd}$ of a compression member at time t

$$N_{b,fi,t,Rd} = k_{o,\theta,max} N_{b,Rd} \left(\gamma_{M1}/1.2 \gamma_{M,fi} \right)$$

where

$N_{b,Rd}$ is the buckling resistance for normal temperature design according to EN 1999-1-1

1.2 is a reduction factor of the design resistance due to the temperature dependent creep of aluminium alloys
Buckling length of a column in intermediate storey

Braced frame in which each storey comprises a separate fire compartment with sufficient fire resistance

A: Shear wall or other bracing system
B: Separate fire compartments in each storey
C: Column buckling length
D: Deformation mode in fire
Relative slenderness

- The same relative drop in the 0.2% proof strength and modulus of elasticity.
- If the actual drop in modulus of elasticity is taken into account, a larger capacity value can be obtained.

\[
\bar{\lambda}_{\Theta} = \frac{\bar{\lambda}}{\alpha_{\Theta}} \quad \alpha_{\Theta} = \sqrt{\frac{k_{E,al,\Theta}}{k_{o,\Theta}}} \sqrt{\frac{E_{al,\Theta}}{E_{al}}} \sqrt{\frac{f_{o,\Theta}}{f_{o}}}
\]
Buckling curves

- Buckling classes: A
- 1.2 is a reduction factor of the design resistance due to the heat for fire design.
Buckling resistance at elevated temperature

- Buckling length of rectangular hollow section 60x60x4
The critical temperature of aluminium alloys

Critical temperature °C

Simplified value 170 °C

Degree of utilisation μ_0

Steel
Aluminium

EN AW-5454
EN AW-5086
EN AW-5083
EN AW-6082
EN AW-3003
The critical temperature of aluminium alloys

\[\theta_{a,cr} = C \ln \left(\frac{1}{A \mu_0^D} - 1 \right) + B \]

- where the degree of utilisation \(\mu_0 = \frac{E_{fi,d}}{R_{fi,d,0}} \) may not be taken less than 0.015
- \(E_{fi,d} \) is the design effect of actions for the fire design situation according to EN 1991-1-2 and
- \(R_{fi,d,0} \) is the corresponding design resistance of the steel member for fire design situation at time \(t \).
- The accuracy of the prediction varies is limited.
- The prediction of critical temperature of steel shows a deviation 3.73%.
The critical temperature of aluminium alloys

Constants for calculation of critical temperature of aluminium alloys

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Thermal treatment</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Maximal deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN AW-5052</td>
<td>O</td>
<td>0.9905</td>
<td>428</td>
<td>74.88</td>
<td>0.2063</td>
<td>14.7 %</td>
</tr>
<tr>
<td>EN AW-5052</td>
<td>H34</td>
<td>0.9797</td>
<td>420</td>
<td>90.06</td>
<td>0.1273</td>
<td>27.0 %</td>
</tr>
<tr>
<td>EN AW-5083</td>
<td>O</td>
<td>0.9942</td>
<td>430</td>
<td>62.53</td>
<td>0.1485</td>
<td>10.5 %</td>
</tr>
<tr>
<td>EN AW-5083</td>
<td>H113</td>
<td>0.9843</td>
<td>424</td>
<td>89.97</td>
<td>0.2711</td>
<td>0.9 %</td>
</tr>
<tr>
<td>EN AW-5454</td>
<td>O</td>
<td>0.9885</td>
<td>424</td>
<td>74.01</td>
<td>0.1519</td>
<td>15.7 %</td>
</tr>
<tr>
<td>EN AW-5454</td>
<td>H32</td>
<td>0.9806</td>
<td>422</td>
<td>85.83</td>
<td>0.1427</td>
<td>15.6 %</td>
</tr>
<tr>
<td>EN AW-6061</td>
<td>T6</td>
<td>0.9957</td>
<td>427</td>
<td>65.38</td>
<td>0.1169</td>
<td>1.8 %</td>
</tr>
<tr>
<td>EN AW-6063</td>
<td>T6</td>
<td>0.9902</td>
<td>422</td>
<td>74.06</td>
<td>0.1048</td>
<td>8.7 %</td>
</tr>
<tr>
<td>EN AW-6082</td>
<td>T6</td>
<td>0.9826</td>
<td>420</td>
<td>89.37</td>
<td>0.1377</td>
<td>4.6 %</td>
</tr>
<tr>
<td>EN AW-3003</td>
<td>O</td>
<td>0.9806</td>
<td>424</td>
<td>95.59</td>
<td>0.3199</td>
<td>4.5 %</td>
</tr>
<tr>
<td>EN AW-3003</td>
<td>H14</td>
<td>0.9753</td>
<td>412</td>
<td>95.87</td>
<td>0.1263</td>
<td>9.4 %</td>
</tr>
<tr>
<td>EN AW-5086</td>
<td>O</td>
<td>0.9843</td>
<td>424</td>
<td>89.97</td>
<td>0.2711</td>
<td>0.8 %</td>
</tr>
<tr>
<td>EN AW-5086</td>
<td>H112</td>
<td>0.9826</td>
<td>428</td>
<td>78.80</td>
<td>0.2438</td>
<td>19.6 %</td>
</tr>
<tr>
<td>EN AW-7075</td>
<td>T6</td>
<td>0.9763</td>
<td>412</td>
<td>94.12</td>
<td>0.1143</td>
<td>12.0 %</td>
</tr>
</tbody>
</table>
ECCS nomogram for aluminium

Reduction of material

Critical temperature \(\theta_{\text{crit}} \), °C

Section factor \(\frac{l_m}{V} \), m⁻¹

Transfer of heat

Utilisation

Time, min

Critical temperature

(\(\frac{A_p}{V} \)/)(\(\frac{\lambda_p}{d_p} \)) W K⁻¹ m⁻³
Assessment 3

- What advantage may be utilised for classification of aluminium cross-sections?
- How is treated the temperature dependent creep of aluminium alloys for simple modelling of buckling resistance?
- What is the simplified value of critical temperature of aluminium alloys?
Summary

- EN1999-1-2 first standard for fire design of aluminium str.
- Based on steel knowledge
- Lower fire resistance compare to steel
 - The low melting point of aluminum (590 °C až 650 °C)
 - The good emisivity 0,3

![Diagram showing reduction factor and temperature relationship between steel and aluminium.](image)
Worked example – beam column

- Laterally restrained beam
- Load \((g_k + q_k)\) 2 kN/m
- Load reduction factor \(\gamma_F = 1.45\)
- Alloy EN AW-5083 (material class B)
Section classification

Flage in compression not decide

Web in compression – stiffened plate

η is taken form diagram 6.4 in EN 1999-1-1

$$\beta = \eta \frac{b}{t} = 0,95 \frac{180}{5} = 34,2 > \beta_3 = 18 \cdot \varepsilon = 18 \cdot 1,51 = 27,1$$

Web and all section Class 4

Web in bending

section asymmetry coefficient ε

varying the stress coefficient g

$$\beta = \eta \cdot g \frac{b}{t} = 0,95 \cdot 0,351 \frac{180}{5} = 12,0 < \beta_1 = 13 \cdot \varepsilon = 13 \cdot 1,63 = 21,1$$

Web and all section Class 1
Effective section

Reduction factor for web in compression material buckling class B

\[\rho_c = \frac{C_1}{b/t} - \frac{C_2}{(b/t)^2} = \frac{29}{180/5} - \frac{198}{(180/5)^2} = 0,894 \]

Effective area

\[A_{\text{eff}} = A_g - (1 - \rho_c) \cdot 2 \cdot b \cdot t = 3848 - (1 - 0,894) \cdot 2 \cdot 180 \cdot 5 = 3752 \text{ mm}^2 \]

Shift of the center of gravity due to buckling

\[\Delta z_t = \frac{-(1 - \rho_c) \cdot 2 \cdot b \cdot t \cdot z}{A_{\text{eff}}} = \frac{-(1 - 0,894) \cdot 2 \cdot 180 \cdot 5 \cdot \left(\frac{180}{2} - 83\right)}{3752} = 0,36 \text{ mm} \]
Resistance check

Section bending resistance

Section poor compression resistance

Buckling factor χ

Combination of buckling and pure bending

\[
\left(\frac{N_{Ed}}{\chi \cdot N_{Rd}} \right)^{\psi_c} + \frac{M_{Ed}}{M_{y,Rd}} = \left(\frac{27,9}{0,483 \cdot 375,2} \right)^{0,8} + \frac{15,3}{22,8} = 0,895 < 1,0
\]

kde $\psi_c = \max\left(0,8; 1,3 \cdot \chi_{\text{min}} \right) = \max\left(0,8; 1,3 \cdot 0,483 \right) = 0,8$

OK
Serviceability check

Full gross section

Due to lower stessess no local buckling

Web in compression

Simplified

Secant modulus of elasticity for maximal stress

Ramberg-Osgood material model

\[
E_s = \frac{E}{1 + 0.002 \frac{E}{\sigma_{Ed,ser}} \left(\frac{\sigma_{Ed,ser}}{f_0} \right)^n} = \frac{70 \times 10^3}{1 + 0.002 \frac{70 \times 10^3}{55.8} \left(\frac{55.8}{110} \right)^5} = 61 \, 022 \, \text{MPa}
\]

OK
Design et elevated temperature

- Hall of a train station

- Localised fire of newsstand
 - The largest diameter of fire 2 m
 - Fire load 4 640 MJ
 - Medium speed fire development $t_\alpha = 300$ s
 - The fastest rate of heat release $RHR_f = 1250$ kW/m2
Mechanical actions at fire

Reduction factor η_{fi}

For snow loading $\psi_{1,1} = 0,2$

$$\eta_{fi} = \frac{G_k + \psi_{1,1} Q_k}{G_k \gamma_G + Q_k \gamma_Q} = \frac{0,66 + 0,2 \cdot 1,33}{0,66 \cdot 1,35 + 1,33 \cdot 1,5} = 0,321$$

$$M_{fi,Ed} = M_{Ed} \ \eta_{fi} = 15,3 \cdot 0,321 = 4,91 \text{ kNm}$$

$$N_{fi,Ed} = N_{Ed} \ \eta_{fi} = 27,9 \cdot 0,321 = 8,96 \text{ kN}$$
Termal loading during fire

Rate of heat release Q

![Graph showing the rate of heat release over time, with a peak at 30 MW after 20 minutes.](image-url)
Thermal heat during fire

Flame height in time \(t \)

Diameter of the fire in time \(t \)

Temperature along the flame axes

Convective part of the rate of heat release \(Q_c \)

![Graph showing flame height over time](chart.png)
Transfer of heat into structure

Step by step procedure

Surface emissivity of the member $\varepsilon_m = 0.3$

Clean aluminium element

Coefficient of heat transfer by convection $\alpha_c = 35 \text{ W/m}^2\text{K}$

Section factor $A_m/V = 130 \text{ m}^{-1}$

Section exposed to three sides
Transfer of heat into structure

Maximal beam temperature 272 °C in 22 min 40 s

Reduction factor for $k_{0,\theta,\text{max}} = 0.596$
Resistance at elevated temperature

Bending resistance

Buckling resistance

Buckling length as at ambient temperature

Interaction as at ambient temperature

\[
\left(\frac{N_{fi,Ed}}{N_{b,fi,t,Rd}} \right)^{\psi_c} + \frac{M_{fi,Ed}}{M_{fi,t,Rd}} = \left(\frac{8.96}{99.0} \right)^{0.8} + \frac{4.91}{14.95} = 0.475 < 1.0
\]
<table>
<thead>
<tr>
<th>Lesson Number</th>
<th>Lesson Title</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fire safety</td>
<td>RZ</td>
</tr>
<tr>
<td>2</td>
<td>Fire and mechanical loading</td>
<td>RZ</td>
</tr>
<tr>
<td>3</td>
<td>Thermal response</td>
<td>RZ</td>
</tr>
<tr>
<td>4</td>
<td>Steel structures</td>
<td>RZ</td>
</tr>
<tr>
<td>5</td>
<td>Concrete structures</td>
<td>JMF</td>
</tr>
<tr>
<td>6</td>
<td>Composite structures</td>
<td>JMF</td>
</tr>
<tr>
<td>7</td>
<td>Advanced models</td>
<td>JMF</td>
</tr>
<tr>
<td>8</td>
<td>Composite floors</td>
<td>FW</td>
</tr>
<tr>
<td>9</td>
<td>Aluminium structures</td>
<td>FW</td>
</tr>
<tr>
<td>10</td>
<td>Timber structures</td>
<td>FW</td>
</tr>
<tr>
<td>11</td>
<td>After fire and Historical structures</td>
<td>FW</td>
</tr>
<tr>
<td>12</td>
<td>Definitions of Design for Robustness</td>
<td>JMD</td>
</tr>
<tr>
<td>13</td>
<td>Global response of structures</td>
<td>JMD</td>
</tr>
<tr>
<td>14</td>
<td>Design recommendations</td>
<td>JMD</td>
</tr>
<tr>
<td>15</td>
<td>Alternative load path method</td>
<td>JMD</td>
</tr>
</tbody>
</table>
Thank you for your attention

František WALD

wald@fsv.cvut.cz
Notes to users of the lecture

- Further readings on the relevant documents from website of www.eaa.net/eaa/education/TALAT

- Keywords for the lecture:
 fire design, aluminium structures, material properties,
Notes to users of the lecture

• Text books
Sources

- Educational programme TALAT
 www.eaa.net/eaa/education/TALAT