

Fire test to Eurocode design

Content of presentation

- Objectives of new fire tests
- Full scale fire tests within the projects of
 - FRACOF (Test 1 ISO Fire)
 - COSSFIRE (Test 2 ISO Fire)
 - FICEB (Test 3 Natural fire & Cellular Beams)
- Test set-up
- Experimental results
 - Temperature
 - Displacement
- Observation and analysis
- Comparison with simple design methods
- Conclusion

Why more fire tests?

Objectives

Test set-up

Experimental results &
Observation

Comparison with simple design methods

Conclusion

Background

- Cardington fire tests
 - Excellent fire performance under natural fire condition
 - Max θ of steel \approx 1150 °C, fire duration \approx 60 min (> 800°C)
 - UK construction details

Objectives

- To confirm same good performance under long fire duration (at least 90 minutes of ISO fire)
- To investigate the impact of different construction details, such as reinforcing steel mesh and fire protection of edge beams
- To validate different fire safety engineering tools

Design of test specimens

Test 1 (FRACOF)

Objectives

Test set-up

Experimental results &
Observation

Comparison with simple design methods

Conclusion

Structure grid of a real building

Adopted steel frames for fire Test 1

Design of test specimens

Test 2 (COSSFIRE)

Objectives

Test set-up

Experimental results &

Observation

Comparison with simple design methods

Conclusion

Structure grid of a real building

Adopted steel frames for fire Test 2

Design of test specimens

Final composite floor systems

Objectives

Test set-up

Experimental results &

Observation

Comparison with simple design methods

Conclusion

Test 1

Test 2

Design of structural members

Objectives

Test set-up

Experimental results &
Observation

Comparison with simple design methods

Conclusion

Steel frame

- Steel and concrete composite beams
 - According to Eurocode 4 part 1-1 (EN1994-1-1)
- Short steel columns

Composite slab

- Total depth
 - According to Eurocode 4 part 1-2 (EN1994-1-2)
- Reinforcing steel mesh
 - Based on simple design rules

Steel joints

- Commonly used joints: double angle and end plate
 - According to Eurocode 3 part 1.8 (EN1993-1-8)

Design of structural members

Objectives

Test set-up

Experimental results &
Observation

Comparison with simple design methods

Conclusion

Arrangement of headed studs over steel beams

Secondary beams

Primary beams

Type of steel studs

- TRW Nelson KB 3/4" - 125 (Φ = 19mm; h = 125 mm;
$$f_v = 350 \text{ N/mm}^2$$
; $f_u = 450 \text{ N/mm}^2$)

Steel joints

Objectives

Test set-up

Experimental results &
Observation

Comparison with simple design methods

Conclusion

Beam to	Beam to beam		
Secondary beam	Primary beam	Deam to Deam	
Double angle web cleats	Flexible end plate	Double angle web cleats	

Grade of steel bolts: 8.8

Diameter of steel bolt: 20 mm

Sizes of structural members

Objectives

Test set-up

Experimental results &
Observation

Comparison with simple design methods

Conclusion

Composite slab

Steel deck: COFRAPLUS60 - 0.75 mm

Concrete quality: C30/37

Reinforcing steel mesh

Mesh size: 150x150

Diameter: 7 mm

Steel grade: S500

Axis distance from top of the slab:

• 50 mm Test 1

• 35 mm Test 2

Mechanical loading condition

Objectives

Test set-up

Experimental results &
Observation

Comparison with simple design methods

Conclusion

15 sand bags of 1512 kg Equivalent uniform load: 390 kg/m²

20 sand bags of 1098 kg Equivalent uniform load: 393 kg/m²

Preparation of fire test 2

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Behaviour of the floor during fire

Objectives

Test set-up

Experimental results &
Observation

Comparison with simple design methods

Structure of the Test 3 (FICEB)

Objectives

Test set-up

Experimental results &
Observation

Comparison with simple design methods

Objectives

Test set-up

Experimental results &
Observation

Comparison with simple design methods

Beam - Beam Connections

Objectives

Test set-up

Experimental results &

Observation

Comparison with simple design methods

Objectives

Test set-up

Experimental results &
Observation

Comparison with simple design methods

Conclusion

Beam - Column Connections

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Conclusion

A393 Mesh Reinforcement, dia 10mm

Full Interaction: between slab & beams, achieved by Shear connectors, dia 19, h=95mm
U-bars reinf. around the slab was added to ensure correct reinfor. Detail requirement for Ambient Temp.

Objectives

Test set-up

Experimental results &
Observation

Comparison with simple design methods

Objectives

Test set-up

Experimental results &
Observation

Comparison with simple design methods

Conclusion

Fire load energy density was 700 MJ/m²

The fire load can be achieved using 45 standard wooden cribs($1m \times 1m \times 0.5 m$ high), positioned evenly around the compartment($9.0m \times 15.0m$).

WOODEN CRIBS LOCATION

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

- Fire temperature
- Heating of unprotected steel beams
- Heating of protected steel members
- Heating of composite slab
- Deflection of the floor
- Observations over the behaviour of composite floor systems
 - Concrete cracking and concrete crushing
 - Failure of reinforcing steel mesh during the test
 - Collapse of edge beams

Fire temperature

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Conclusion

Time (min)

Heating of unprotected steel beams

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Test 3 Heating of unprotected steel beams

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Heating of protected steel beams

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Conclusion

Observation

– Much hotter beams in Test 2 \approx 550 °C and one edge secondary beam heated up to > 600 °C

1000

900

800

 $\otimes D$

⊗C

 $\otimes \mathbf{E}$

⊗B

Heating of composite slab

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Test 1

Test 2

Test 3 Heating of composite slab

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Displacement transducers for deflection

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Conclusion

Test 1 Test 2

Deflection of the floors

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Conclusion

Test 1

Test 2

Test 3 Displacement transducers for deflection

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Test 3 Deflection of the floors

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Cracking of concrete (Test 1)

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Conclusion

Observation

 Excellent global stability of the floor despite the failure of reinforcing steel mesh

• Cracking of concrete (Test 3)

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

- Observation
 - Excellent global stability of the floor despite appearance of the crack

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Crushing of concrete (Test 2)

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Conclusion

Observation

 Global stability of the floor maintained appropriately despite the failure of one edge beam

Comparison with simple design rules

Objectives

Test set-up

Experimental results &

Observation

Comparison with simple design methods

Conclusion

	Test 1		Test 2	
	Test	Simple design methods	Test	Simple design methods
Fire rating (min)	> 120	120	> 120	96
Deflection (mm)	450	366(*)	510	376(*)

Observation

- Experimental results:
 - > Fire rating > 120 minutes

New experimental evidences

Objectives

Test set-up

Experimental results &
Observation

Comparison with simple design methods

Conclusion

General conclusions relative to new fire tests

- Excellent performance of the composite floor systems behaving under membrane action for long ISO fire exposure (>120 minutes)
- High level of robustness of the composite floor system despite certain local failures
- Specific attention to be paid to construction details with respect to reinforcing steel mesh in order to ensure a good performance of integrity criteria
- Simple design method is on the safe side in comparison with test results
- No sign of failure during cooling phase of the composite floor systems