

ALTERNATIVE LOAD PATH METHOD

Local resistance and ductility

Robustness of structures – Alternative load path method

Beam instability

- ☐ Economical approach
- ☐ Requirements:
 - tying resistance
 - ductility criteria
 - redundancy

• ...

Robustness of structures – Alternative load path method

Robustness of structures – Alternative load path method

Robustness of structures – Alternative load path method

Robustness of structures – Alternative load path method

Robustness of structures - Alternative load path method

☐ Key parameter for the catenary action

Robustness of structures – Alternative load path method

☐ Lateral restraint simulated by horizontal jacks

Robustness of structures – Alternative load path method

European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and Catastrophic Events

Robustness of structures – Alternative load path method

Robustness of structures – Alternative load path method

J.-F. Demonceau & J.-P. Jaspart, ULg

European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and Catastrophic Events

~~~~







Robustness of structures - Alternative load











Robustness of structures - Alternative load path method







Robustness of structures - Alternative load path method

#### M-N response of connections



#### M-N response of connections



- ☐ Economical approach
- ☐ Requirements:
  - tying resistance
  - Ductility criteria
  - Redundancy

• ...





- ☐ First philosophy possibly to be followed:
  - Capacity design of joints

JOINTS ARE AT LEAST ENOUGH RESISTANT THAN
THE WEAKER OT THE TWO CONNECTED MEMBERS

'overstrengthed' joints

⇒ robustness can only result from the frame itself



Robustness of structures – Alternative load path method





Robustness of structures – Alternative load path method

- ☐ Second philosophy possibly to be followed:
  - Structural redundancy and ductility of joints

# JOINTS ARE POSSIBLY LESS RESISTANT THAN THE WEAKER OT THE TWO CONNECTED MEMBERS

'partial-strength' joints

⇒ redundancy and ductility required by the frame and by the joints



Robustness of structures - Alternative load path method





Robustness of structures – Alternative load path method

- ☐ Robustness requirements
  - Redundancy
  - Ductility

in: the frame alone or the frame and the <u>constitutive joints</u>



# DERIVATION OF DESIGN REQUIREMENTS



#### Robustness index



**HIGH INDEX REQUIRED** 





**LOW INDEX REQUIRED** 











- ☐ Limitation of the substructure extracted by Demonceau :
  - Valid only if the normal force in the column above the column lost  $N_{up}$  is constant
- ☐ Huvelle developments: **couplings** between the directly and indirectly affected parts of the structure and between the different storeys





Robustness of structures – Alternative load path method

☐ New substructure model:





- ☐ Matlab program that allows the computation of the response of a frame submitted to a column loss
- ☐ Input data's
  - number of span, number of stories
  - length of the spans, height of the stories
  - beam and columns cross sections
  - E, fy
  - location of the lost column in the frame





- ☐ Master dissertation on 3D aspects within SUSCOS program
- ☐ Use of the new analytical methods, generalization of the Matlab program





#### ☐ Main conclusion:

 The ULg model appears to be accurate for the prediction of a 3D structure





Robustness of structures - Alternative load path method

☐ Example of comparison:





<sup>2</sup>. Jaspart, ULg

41

☐ Description of the considered substructure and loading





☐ Maximum dynamic displacement according to the value of the load P (or Q) and its rise time :



Pseudo-static curve gives the maximum displacement reached if P is applied instantaneously.



Robustness of structures - Alternative load path method



- ☐ Basic simplified model was developed under the following assumptions :
  - Rigid-plastic model;
  - Beams are supposed to be infinitely rigid and thus keeping a constant length,
  - Plastic hinges are submitted to a moment  $M=M_{pl}$  assumed to be constant, interaction with the axial load being neglected;
  - Moderate displacements:
    - $\theta \approx u/l (\approx \sin(\theta) \approx tg(\theta))$
    - $\cos(\theta) = 1 \frac{\theta^2}{2} = 1 u^2/(2l^2)$
- ☐ Energy equation :



$$E_{kinetic} + E_{hinges} + E_{spring} = W_e \iff \frac{1}{2}M_g.\dot{u}^2 + 4.\int M(\theta).d\theta + \int F_K(\delta_K).d\delta_K = \int P(u).du \qquad (1)$$

$$\Leftrightarrow M_g.\ddot{u}(t) + \frac{4.M_{pl}}{l} + \frac{2K}{l^2} \cdot u(t)^3 = P(t) = P.\frac{t}{t_r}$$
 (2)



Robustness of structures – Alternative load path method

#### **Derivation of requirements**

☐ Available resistance and ductility requirements





#### Derivation of requirements

- ☐ Design requirements transformed into design guidelines
- ☐ Example of such guidelines for joints

#### **Design requirements**

- **■ F**<sub>11</sub> > .....
- Φ<sub>11</sub> > ......
- failure modes

•

#### **Design guidelines for joints**

- percentage of reinforcement
- provisions for t/d ratios
- favourable failure modes

•



#### To be or not to be ... robust





Robustness of structures – Alternative load path method

#### To be or not to be ... robust





Robustness of structures - Alternative load path method

\_\_\_\_\_