

Design for Fire and Robustness

František WALD

TAN Kang Hai

Jean-Marc FRANSSEN

Jean-François DEMONCEAU

Zdeněk SOKOL

List of Lessons at Seminar

	1.	Fire safety	FW	
	2.	Fire and mechanical loading	FW	
	3.	Thermal response	FW	
	4.	Steel structures	JMF	
	5.	Concrete structures	JMF	
	6.	Composite structures	JMF	
	7.	Advanced models	JMF	
	8.	Composite floors	FW	
	9.	Aluminum structures	FW	
	10.	Timber structures	FW	
	11.	After fire and Historical structures	FW	
	12.	Overview of Explosion-blast Resistance	KHT	
	13.	Response to blast	KHT	
○ P.40	14.	P-I diagram	KHT	
⊕ Tu	15.	Equivalent single degree	KHT	
	16.	Design example	KHT	
European Erasmus Mundus Master Course	17.	Definitions of Design for Robustness	JMD	
~~~ <del>~</del>	18.	Global response of structures	JMD	
Sustainable Constructions	19.	Design recommendations	JMD	
under Natural Hazards and Catastrophic Events	20.	Alternative load path method	JMD	2

~~~~~


Structures after fire and Historical structures in fire

František Wald

Czech Technical University in Prague

Objectives of the lecture

- The treatment of reconstruction of fire damaged structures
- The particularity of fire safety of historical structures

After fire Principles Assessment procedure Design for repair Case study Summary **Historical structures Statistics** Cultural value Technology Management Case studies **Notes** European Erasmus Mundus Master Course U----Sustainable Constructions under Natural Hazards

Structures after fire

Outline of the lecture

- o Principles
- o Assessment procedure
- o Design for repair
- o Case study
- Summary

5

After fire Principles Assessment procedure Design for repair Case study Summary

and Catastrophic Events

Historical
structures
Statistics
Cultural value
Technology
Management
Case studies

Notes

Sustainable Constructions under Natural Hazards and Catastrophic Events

Structures after fire

In fire design

- the structure should resist the required time of fire
- the structure should survived all fire exposure

Based on rules and models

After fire Principles Assessment procedure Design for repair Case study Summary **Historical structures Statistics** Cultural value **Technology** Management Case studies **Notes** European Erasmus Mundus Master Course U----Sustainable Constructions under Natural Hazards and Catastrophic Events

Structures after fire

- The structural behavior **after fire** is not determined
 - After compartment fires all the interior is substantially damaged
 - Bearing structure is only part of the cost of the building
 - Except of special cases, like
 - **Tunnels**
 - Highrised
 - **Towers**

7

After fire **Principles** Assessment procedure Design for repair Case study Summary

Historical structures Statistics Cultural value **Technology** Management Case studies

Notes

Sustainable Constructions and Catastrophic Events

an Erasmus Mundus ~u~co~

Assessment procedure

- Site visit
- Desk study
- Detailed collection of evidence
- Damage assessment
- Specification of repairs

After fire **Principles** Assessment procedure Design for repair Case study Summary <u>Historical</u> **structures Statistics** Cultural value **Technology** Management Case studies **Notes** European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and Catastrophic Events

Site visit

- To gain early scale of damage
- To advise on safety of building
- To recommend protection measures

Desk Study

- Collect relevant information
 - Original design of building
 - Construction materials, usage before fire, cause of fire
 - Duration of fire
 - Fire spread
 - Contents left unburnt
- Establish a strategy for gathering of more detailed information

After fire Principles Assessment procedure Design for repair Case study Summary **Historical structures Statistics** Cultural value **Technology** Management Case studies **Notes** o B pean Erasmus Mundus Master Course U----Sustainable Constructions under Natural Hazards and Catastrophic Events

Detailed Assessment Strategy

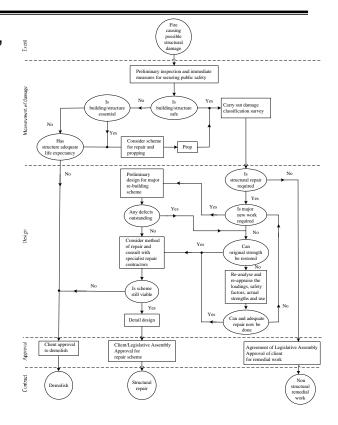
Demage classification

- A. No damage
- B. Repairable damages
 - detailed collection of evidences
- C. Major damage
 - replacement of structural member
- D. Total damage
 - scrap

After fire
Principles
Assessment
procedure
Design for
repair
Case study
Summary

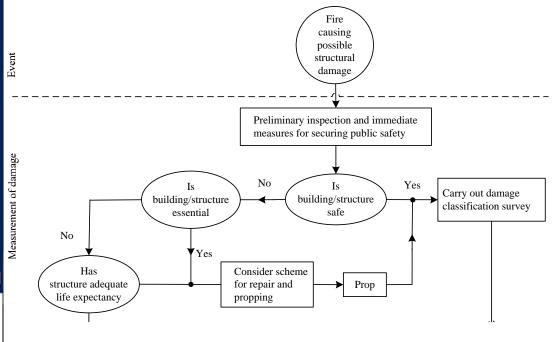
Historical
structures
Statistics
Cultural value
Technology
Management
Case studies

Notes


~u~c=~

Sustainable Constructions under Natural Hazards and Catastrophic Events

References to assesment procedure


Concrete structures.

Concrete Soc., 1990

After fire Principles Assessment procedure Design for repair Case study Summary **Historical** structures **Statistics** Cultural value **Technology** Management

References to assesment procedure **Concrete structures**

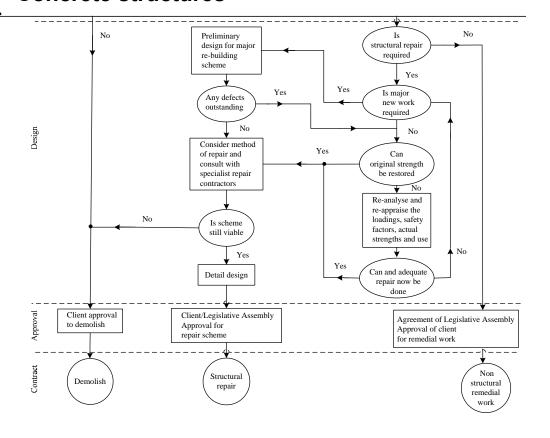
under Natural Hazards and Catastrophic Events

Case studies

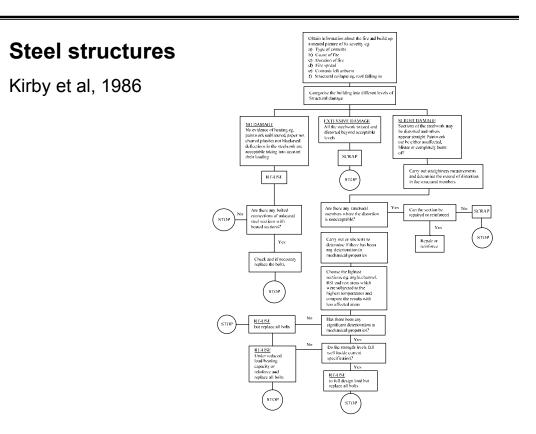
Principles Assessment procedure Design for repair Case study Summary

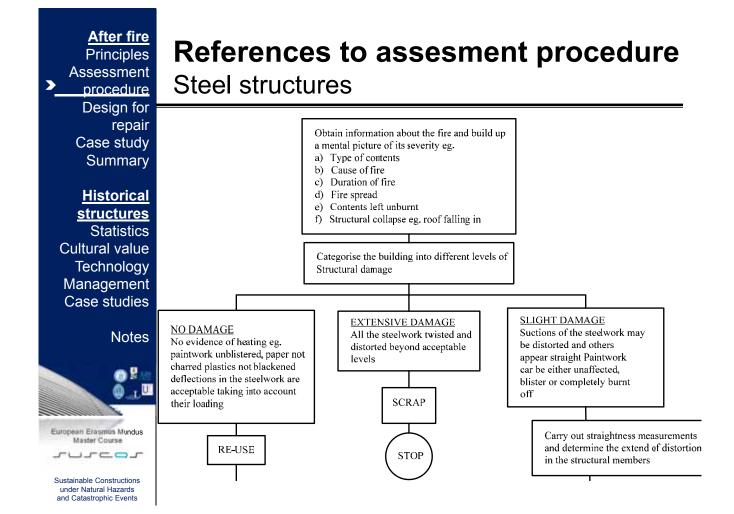
After fire

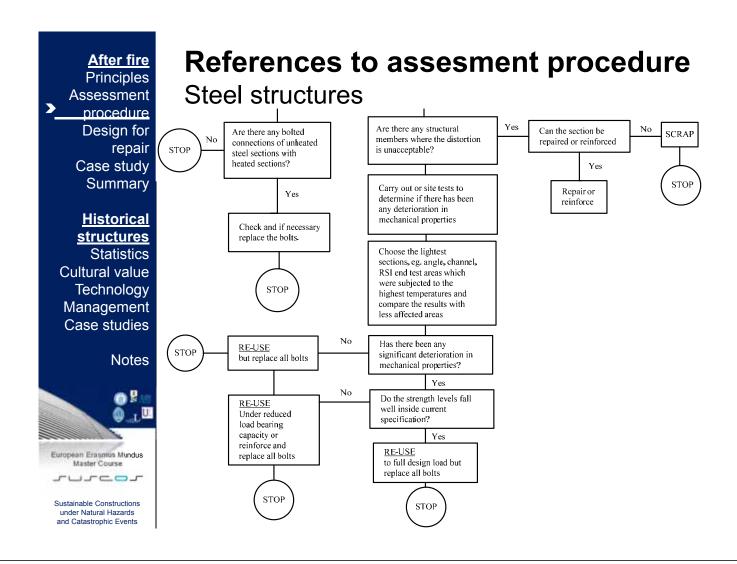
Historical structures **Statistics** Cultural value Technology Management Case studies


Notes

ean Erasmus Mundus


Sustainable Constructions and Catastrophic Events


References to assesment procedure **Concrete structures**



After fire Principles Assessment procedure Design for repair Case study Summary **Historical** structures **Statistics** Cultural value **Technology** Management Case studies **Notes** European Erasmus Mundus Master Course U----Sustainable Constructions under Natural Hazards and Catastrophic Events

References to assesment procedure

Detailed Collection of Evidence

- Residual strength and stiffness of material
- Temperature attained in structure
- Fire development
- Cooling
- Result of firemen's intervention
- Correlation of results

After fire Principles Assessment procedure Design for repair Case study Summary <u>Historical</u> **structures Statistics** Cultural value **Technology** Management Case studies **Notes** European Erasmus Mundus Master Course U----Sustainable Constructions under Natural Hazards and Catastrophic Events

Fire Developments

Depends on

- Burnt combustible materials
- Openings
- Construction materials of enclosure

Should fulfill

Correlation with physical evidence

After fire **Principles** Assessment procedure Design for repair Case study Summary **Historical** structures **Statistics** Cultural value **Technology** Management Case studies **Notes** an Erasmus Mundus Sustainable Constructions

and Catastrophic Events

Temperatures Attained in Structural Members

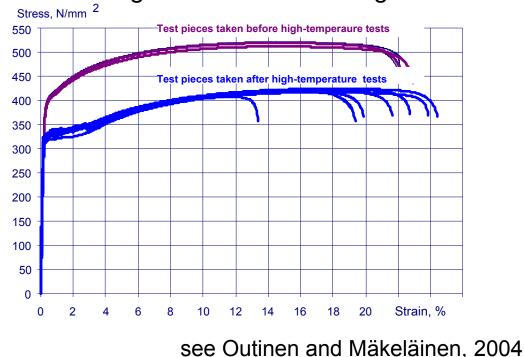
- Fire development + thermal analysis
 - Metallurgy analysis
 - Colour changes in concrete
- More detailed testing: thermoluminescence test
- Physical evidence
- Correlation of results

After fire Principles Assessment procedure Design for repair Case study Summary **Historical** <u>structures</u> **Statistics** Cultural value **Technology** Management Case studies **Notes** European Erasmus Mundus Master Course \_\_\_\_ Sustainable Constructions under Natural Hazards and Catastrophic Events

Mechanical Properties

- Temperatures + residual properties relationships
- Non-destructive testing
 - Schmit Hammer Test
 - Ultrasonic Pulse Velocity Test

- Destructive testing
- Correlation of results


Destructive Tests

- Concrete core test
- Steel coupone test

After fire Principles Assessment procedure Design for repair Case study Summary **Historical structures Statistics** Cultural value **Technology** Management Case studies **Notes** European Erasmus Mundus Master Course U----Sustainable Constructions under Natural Hazards and Catastrophic Events

Steel coupone test

Steel degradation after heating to 950°C

After fire
Principles
Assessment
procedure
Design for
repair
Case study
Summary

Historical
structures
Statistics
Cultural value
Technology
Management
Case studies

0 P.

Notes

European Erasmus Mundus Master Course

Sustainable Constructions under Natural Hazards and Catastrophic Events

Design calculations for repair

Load

- Include extra weight of repair materials
- Temporary support loads
- Reduced material factors

Model

- Treat structure as simply supported
- Complex modelling at elevated temperature

After fire **Principles** Assessment procedure Design for repair Case study Summary <u>Historical</u> <u>structures</u> **Statistics** Cultural value **Technology** Management Case studies **Notes** European Erasmus Mundus Master Course U----Sustainable Constructions under Natural Hazards and Catastrophic Events

Design calculations for repair

of steel structures

Compressed members

- Check of straitness
- · Imperfections and tolerances
- Change of deformed compressed members
- Local buckling of plates heated up to 500 °C

Steel connections

- Bolts change
- Welds 90 % resistance of heated up to 500 °C

Design calculations for repair of steel structures

Fireman intervention

- Hardening and los of ductility
- Source fireman reports of fire attack
- Hardeness check by impact hammer

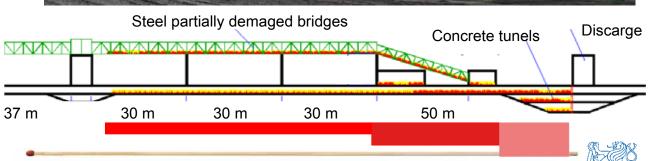
Repair Methods

- Reconstruction
 - Sprayed concrete
 - Resin repair
 - Overcladding
- Others
 - FRP strengthening
 - Change of use
 - Additional supports

Advanced techniques

- Consideration of actual fire fire generate non-uniform temperature
 - Fire advanced modelling
 - Thermal deformation measurements
 - Destructive + non-destructive testing
 - Advanced models of damaged structure

Case study Steel coal feeding bridge



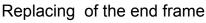
- ☐ Fire September 2005, Opatovice power station, Czech Republic
- □ Coal belt transport infrastructure completely burned
- □ Bearing structure noticeably damaged

120 m of the steel transport bridges attact

Observations

- ☐ Geodetic measurements of major positions of the structure, joints of the trusses and the rail of the conveyor
- ☐ Geometric measurements of **straightness of compressed elements**
- ☐ Mechanical property by 54 coupon tests reduction 10 %
- □ Microstructure of steel changes acceptable

Deformed upper stiffening truss



Reconstruction

- □ Elements with excessive deformations were replaced
 - □ Maximum allowed out of straightness 10 mm
- □ Operational test after reconstruction

Replacement

- □ Horizontal bridges
 - Upper truss stiffeners
 - Upper crossbeams
 - □ Upper parts of the props of the end stiffeners
- □ Inclined bridge
 - □ Also lower cross beams
 - □ Also lower stiffening trusses

Straightening of riveted connections

Straightening of frame geometry

- □ Not visibly deformed
- □ After detailed calculation
 - □ Assumed 15 % reduction of resistance
 - Unsatisfactory connection

strengthened by welding

Bridge after reconstruction

Uncovered bridge

Reconstruction in three weeks

Summary

- Assessment differs
 - from fire resistant design of the structure
 - From structural material
- Steel fire damaged structures can be mostly repaired
- Concrete fire damaged structures have to be damaged
- Timber fire damaged structures mostly does not exists

37

After fire Principles Assessment procedure Design for repair Case study Summary **Historical** structures **Statistics** Cultural value **Technology** Management Case studies **Notes**

an Erasmus Mundus

Sustainable Constructions

and Catastrophic Events

Assessment

- Which structures are designed after fire?
- What are the steps of detailed Assessment Strategy?
- What are the steps Assessment Procedure?
- What is the procedure for compressed members after fire?
- What is the procedure for bolted connections after fire?
- What is the procedure for welded connections after fire?

After fire Principles Assessment procedure Design for repair Case study Summary **Historical** structures **Statistics** Cultural value Technology Management Case studies Notes

Sustainable Constructions under Natural Hazards

and Catastrophic Events

Historical structures in fire Outline of the lecture

- Data, loss statistics and evaluating risks
- Cultural and financial value
- Available and developing technology
- Property management strategies
- Case studies

39

After fire
Principles
Assessment
procedure
Design for
repair
Case study
Summary

Historical structures Statistics Cultural value Technology Management Case studies

Notes

European Erasmus Mundus Master Course

~u~c-~

Sustainable Constructions under Natural Hazards and Catastrophic Events

15th C Södra RÍda Church, Sweden

40

After fire Principles Assessment procedure Design for repair Case study Summary

Historical structures Statistics Cultural value Technology Management Case studies

Notes

European Erasmus Mundus Master Course

~U~C-~

Sustainable Constructions under Natural Hazards and Catastrophic Events

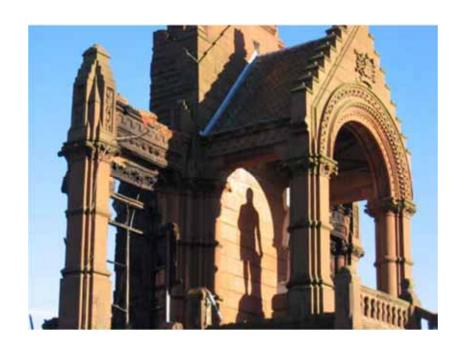
15th C Södra RÍda Church, Sweden

41

After fire Principles Assessment procedure Design for repair Case study Summary

Historical structures Statistics Cultural value Technology Management Case studies

Notes



European Erasmus Mundus

~U~C\_~

Sustainable Constructions under Natural Hazards and Catastrophic Events

Burns Monument after November 2004 fire, Kilmarnock. Scotland

After fire Principles Assessment procedure Design for repair Case study Summary **Historical** structures **Statistics** Cultural value **Technology** Management Case studies **Notes**

Burns Monument after November 2004 fire, Kilmarnock. Scotland

43

After fire **Principles** Assessment procedure Design for repair Case study Summary

pean Erasmus Mundus Master Course \_\_\_\_ Sustainable Constructions under Natural Hazards

and Catastrophic Events

Historical structures **Statistics** Cultural value Technology Management Case studies

Notes

Sustainable Constructions

and Catastrophic Events

Historic fire incidents in cities

- London, England 1212 and 1666
- Uppsala, Sweden 1702
- Copenhagen, Denmark 1795
- Edinburgh, Scotland 1824
- Chicago, USA 1871
- Boston, USA 1872
- Jacksonville, USA 1901
- Baltimore, USA 1904
- Alesund, Norway 1904
- Chelsea, USA 1908
- Salem, USA 1914
- Thessaloniki, Greece 1917
- Tokyo, Japan 1923
- Chiado, Lisbon, Portugal 1988
- Edinburgh, Scotland 2002
- Trondheim, Norway 2002

44

After fire Principles Assessment procedure Design for repair Case study Summary **Historical** <u>structures</u> Statistics | Cultural value **Technology** Management Case studies **Notes** pean Erasmus Mundus Master Course \_\_\_\_\_ Sustainable Constructions under Natural Hazards and Catastrophic Events

Major European heritage fire losses the mid 1980's to the mid 1990's

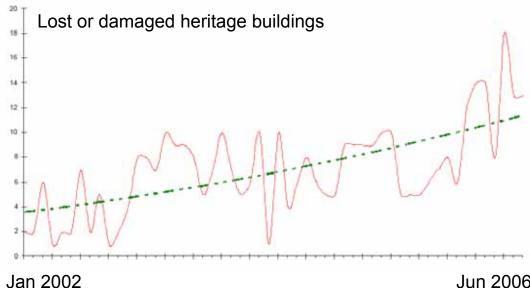
- York Minster, England July 1984
- Hampton Court Palace, England March 1986
- Uppark House, England August 1989
- Proveantgarden, Copenhagen, Denmark February 1992
- Odd Fellow Palace, Copenhagen, Denmark April 1992
- Christianborg Palace Church, Copenhagen, Denmark June 1992
- Windsor Castle, England November 1992
- Redoutensal, Hofburg Palace, Vienna, Austria November 1992
- Pont de la Chapelle, Lucerne, Switzerland August 1993

45

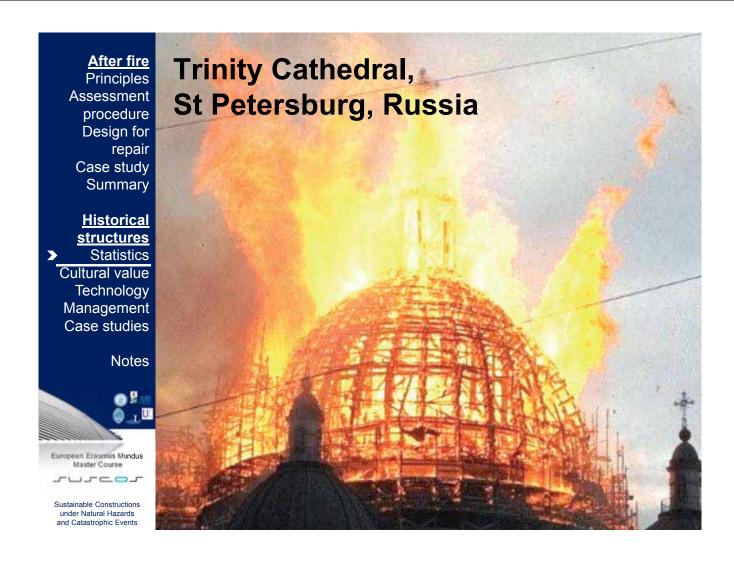
After fire **Principles** Assessment procedure Design for repair Case study Summary

Historical structures **Statistics** Cultural value **Technology** Management Case studies

Notes



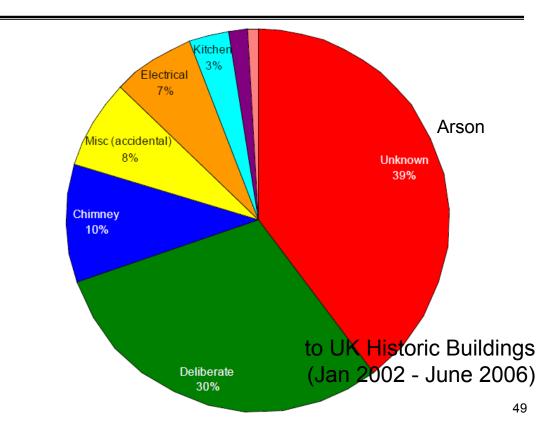
in Erasmus Mundus 1----


Sustainable Constructions and Catastrophic Events

Example Fire Loss to Historic Buildings

Monthly and Cumulative in UK Historic **Buildings**

Jun 2006


and Catastrophic Events

Most common causes of fire in historic buildings

- 1. Arson
- 2. Electrical fault
- 3. Match
- 4. Smoking Materials
- 5. Candle
- 6. Heating equipment
- 7. Natural causes (lightning)
- 8. Hot works

After fire **Principles Assessment** procedure Design for repair Case study Summary **Historical** structures Statistics Cultural value **Technology** Management Case studies **Notes** European Erasmus Mundus Master Course U----Sustainable Constructions under Natural Hazards

Causes of Fire Loss

After fire Principles Assessment procedure Design for repair Case study Summary

and Catastrophic Events

Historical structures
Statistics
Cultural value
Technology
Management
Case studies

Notes

European Erasmus Mundus Master Course

~~~~~

Sustainable Constructions under Natural Hazards and Catastrophic Events

#### Hofburg Palace, Vienna December 1992



## After fire Principles Assessment procedure Design for repair Case study Summary

### Thatched Cottage, Stanford in the Vale, Oxford, England August 2005 fire



**Notes** 



European Erasmus Mundus Master Course

~~~~~

Sustainable Constructions under Natural Hazards and Catastrophic Events

51

After fire Principles Assessment procedure Design for repair Case study Summary

Historical
structures
Statistics
Cultural value
Technology
Management
Case studies

Notes

European Erasmus Mundus Master Course

~U~C\_~

Sustainable Constructions under Natural Hazards and Catastrophic Events

Bower Building, Glasgow University, Scotland

After fire **Principles** Assessment procedure Design for repair Case study Summary <u>Historical</u> **structures Statistics** ➤ Cultural value Technology Management Case studies **Notes** European Erasmus Mundus Master Course U----Sustainable Constructions under Natural Hazards and Catastrophic Events

Evaluation of risks: measures for historic buildings

Considering the consequences of the loss of a historic building, the risk analysis should include:

- loss of economic value (in terms of providing a modern replacement of premises of the same quality as the building which has been lost)
- loss of historic cultural and emotional value
- loss of a positive image for the local community
- loss of economic impact on the tourist industry
- additional costs for reconstruction

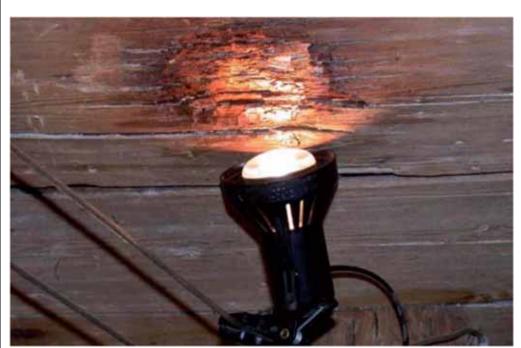
After fire **Principles** Assessment procedure Design for repair Case study Summary **Historical structures Statistics** ➤ Cultural value **Technology** Management Case studies **Notes** an Erasmus Mundus Sustainable Constructions and Catastrophic Events

Evaluation of risks: special measures for historic buildings

The special characteristics of historic buildings should be described and analysed in the risk analysis to recognise the:

- particular vulnerability of the building
- activities taking place in the building
- fabric of the building and its structural features
- surroundings of the building, and the activities that take place there
- probability of fire ignition
- length of time required for the fire brigade to arrive

53


After fire **Principles** Assessment procedure Design for repair Case study Summary **Historical** structures **Statistics** ➤ Cultural value Technology Management Case studies **Notes**

I U

Sustainable Constructions under Natural Hazards

and Catastrophic Events

Fire risk from spot lamp

55

After fire Principles Assessment procedure Design for repair Case study Summary

Historical
structures
Statistics
Cultural value
Technology
Management
Case studies

Notes

Sustainable Constructions under Natural Hazards and Catastrophic Events

Introducing technology into historic and cultural buildings

Essential

 The fire systems should be central to meeting the objectives of the protection of life, buildings and contents.

Appropriate to Risk

 Any system that is installed should be apposite to the risks being considered.

Compliant with legislation

 Systems should be installed according to demonstrable performance-based and other legislatively prescribed standards of safety.

Minimally invasive

 The retrospective fitting of fire systems should involve minimal degrees of physical intervention on the historic structure.

Sensitively integrated

 Installed systems should be designed to be integrated sympathetically with the historic fabric and its detail.


Reversible

Fire systems should be installed according to a reversible, 'plug-in, plug-out' installation philosophy.

After fire Principles Assessment procedure Design for repair Case study Summary **Historical** structures **Statistics** Cultural value Technology Management Case studies **Notes** European Erasmus Mundus Master Course \_\_\_\_ Sustainable Constructions under Natural Hazards

and Catastrophic Events

Inserted intumescent door sealing strip

57

After fire Principles **Assessment** procedure Design for repair Case study Summary **Historical** structures Statistics Cultural value Technology Management Case studies **Notes** an Erasmus Mundus ~u~co~ Sustainable Constructions under Natural Hazards and Catastrophic Events

Sprinkler

After fire **Principles Assessment** procedure Design for repair Case study Summary **Historical** structures **Statistics** Cultural value Technology Management Case studies **Notes** European Erasmus Mundus Master Course

Technical solution Example - pull fire escape

Museo diocesano Santa Chiara di Sulmona

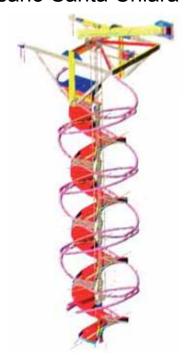
\_\_\_\_

Sustainable Constructions under Natural Hazards and Catastrophic Events

Historical
structures
Statistics
Cultural value
Technology
Management
Case studies

Notes

European Erasmus Mundus Master Course


~u~c-~

Sustainable Constructions under Natural Hazards and Catastrophic Events

Technical solution Example - pull fire escape

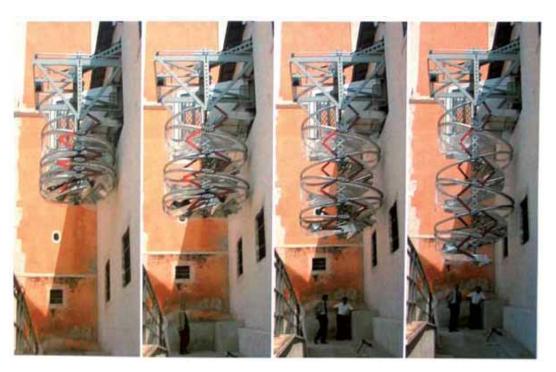
Museo diocesano Santa Chiara di Sulmona

After fire Principles Assessment procedure Design for repair Case study Summary

Museo diocesano Santa Chiara di Sulmona

Example - pull fire escape

Technical solution



Notes

Sustainable Constructions under Natural Hazards and Catastrophic Events

U----

After fire Principles Assessment procedure Design for repair Case study Summary

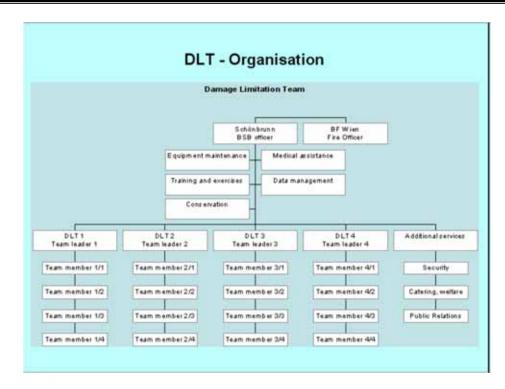
Historical
structures
Statistics
Cultural value
Technology
Management

Case studies

Notes

Sustainable Constructions

and Catastrophic Events


Improvements by records/rules

A Fire Safety Log Book

- Fire training sessions
- Fire drills undertaken
- Inspections
 - by the insurance company, fire brigade or other persons including brief details of any observations made
- Full details of all fire equipment
 - fire systems maintenance, including
 - emergency lighting
 - fire detection or alarm systems
- Details of any fire incidents, false alarms or other matters of interest, together with the responses or remedial action taken.

After fire **Principles** Assessment procedure Design for repair Case study Summary **Historical structures Statistics** Cultural value **Technology** Management Case studies **Notes** European Erasmus Mundus Master Course

Schloss Schonbrunn Damage Limitation Team structure

63

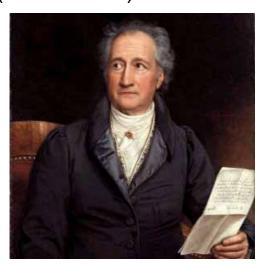
After fire Principles Assessment procedure Design for repair Case study Summary

Sustainable Constructions under Natural Hazards

and Catastrophic Events

Historical
structures
Statistics
Cultural value
Technology
Management
Case studies

Notes



European Erasmus Mundus Master Course

Sustainable Constructions under Natural Hazards and Catastrophic Events

Herzogin Anna Amalia Library in Weimar

- Built in 1565 as a palace for Duke Johann Wilhelm
- In 1766, the Duchess Anna Amalia converted to Library
- Goethe the librarian (1797 1832)

After fire Principles Assessment procedure Design for repair Case study Summary **Historical** structures **Statistics** Cultural value **Technology** Management Case studies **Notes** T U ean Erasmus Mundus Master Course \_\_\_\_ Sustainable Constructions under Natural Hazards

Engraving

65

After fire Principles Assessment procedure Design for repair Case study Summary

and Catastrophic Events

Historical
structures
Statistics
Cultural value
Technology
Management
Case studies

Notes

Sustainable Constructions under Natural Hazards and Catastrophic Events

Fire

- Evening of 2 September 2004 severely demages
 - The fire started in the attic and spread to the rococo hall
 - Automatic fire report
 - Fire compartmentation, fire walls and doors
- 50,000 books were completely destroyed
- 62,000 suffered fire and/or water damage
 - saved as the fire blazed by staff and the public, who organised hand-to-hand chains.
 - included the 'Luther Bible' from 1534

After fire Principles Assessment procedure Design for repair Case study Summary

Historical
structures
Statistics
Cultural value
Technology
Management
Case studies

Notes

European Erasmus Mundus Master Course

~~~~~

Sustainable Constructions under Natural Hazards and Catastrophic Events

#### Library on fire: 2 September 2004



67

## After fire Principles Assessment procedure Design for repair Case study Summary

Historical
structures
Statistics
Cultural value
Technology
Management
Case studies

**Notes** 



European Erasmus Mundus Master Course

~U~C_~

Sustainable Constructions under Natural Hazards and Catastrophic Events

#### Post fire situation



#### **After fire Principles Assessment** procedure Design for repair Case study Summary **Historical** structures **Statistics** Cultural value Technology Management Case studies **Notes** bean Erasmus Mundus Master Course ____

#### The interior after the fire



#### After fire Principles **Assessment** procedure Design for repair Case study Summary

Sustainable Constructions under Natural Hazards and Catastrophic Events

**Historical** structures Statistics Cultural value Technology

Management Case studies

**Notes** 



an Erasmus Mundus

-u-c--

Sustainable Constructions under Natural Hazards and Catastrophic Events

#### The interior after the fire



# After fire Principles Assessment procedure Design for repair Case study Summary

Historical
structures
Statistics
Cultural value
Technology
Management
Case studies

**Notes** 



European Erasmus Mundus Master Course

Sustainable Constructions under Natural Hazards and Catastrophic Events

#### **Book salvage**



71

#### After fire Principles Assessment

procedure
Design for
repair
Case study
Summary

Historical
structures
Statistics
Cultural value
Technology
Management
Case studies

**Notes** 



European Erasmus Mundus Master Course

~U~C_~

Sustainable Constructions under Natural Hazards and Catastrophic Events

#### Historic books do burn



#### **After fire Principles Assessment** procedure Design for repair Case study Summary **Historical** structures **Statistics** Cultural value Technology Management Case studies **Notes**

European Erasmus Mundus Master Course

Sustainable Constructions under Natural Hazards

and Catastrophic Events

#### **Book salvage**



73

# After fire Principles Assessment procedure Design for repair Case study Summary

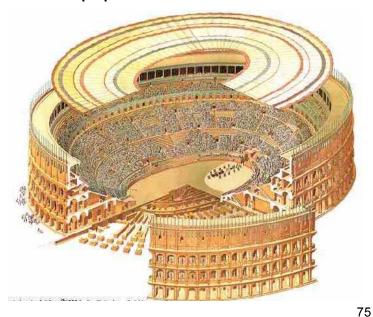
Historical
structures
Statistics
Cultural value
Technology
Management
Case studies

**Notes** 



Sustainable Constructions under Natural Hazards and Catastrophic Events

#### The Colosseum fire 217 AD


According to study of Prof. Enzo Cartapati



#### **After fire Principles** Assessment procedure Design for repair Case study Summary **Historical structures Statistics** Cultural value **Technology** Management Case studies **Notes** ean Erasmus Mundus Master Course ____ Sustainable Constructions under Natural Hazards and Catastrophic Events

#### The Colosseum fire 217 AD

- For up to 45 000 viewers
- Timber stands and equipment



After fire **Principles** Assessment procedure Design for repair Case study Summary

**Historical** structures **Statistics** Cultural value Technology Management Case studies

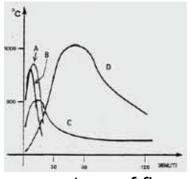
**Notes** 



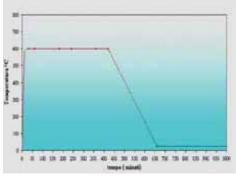
Sustainable Constructions

and Catastrophic Events

#### The Colosseum fire 217 AD


- Construction from 69 AD under Emperor Vespasian
- Open hand 80 AD at emperor Titus
- Fire in 217, 23 August??
- Earthquakes year August-October 223
- Reconstruction in 230 Under the Emperor of Alexander Severus
- Abandoned in 523




#### **After fire Principles Assessment** procedure Design for repair Case study Summary **Historical** structures **Statistics** Cultural value **Technology** Management Case studies **Notes** European Erasmus Mundus Master Course ____

#### The Colosseum fire 217 AD

Fire simulation by prof. Enzo Cartapati







Temperature of structure

77

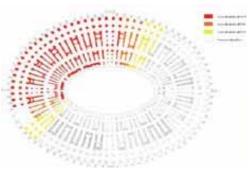
## After fire Principles Assessment procedure Design for repair Case study Summary

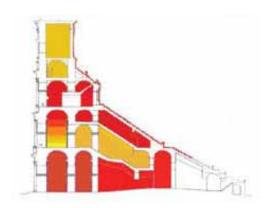
Sustainable Constructions under Natural Hazards

and Catastrophic Events

## Historical structures Statistics Cultural value Technology Management Case studies

Notes





Sustainable Constructions under Natural Hazards and Catastrophic Events

~u~co~

#### The Colosseum fire 217 AD

Fire simulation by prof. Enzo Cartapati

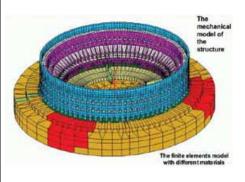


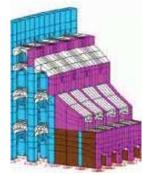


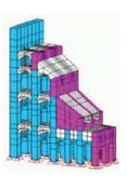
Transfer of heat

#### **After fire Principles Assessment** procedure Design for repair Case study Summary **Historical** structures **Statistics** Cultural value Technology Management Case studies **Notes**

European Erasmus Mundus Master Course


Sustainable Constructions under Natural Hazards


and Catastrophic Events


____

#### The Colosseum fire 217 AD

Fire simulation by prof. Enzo Cartapati





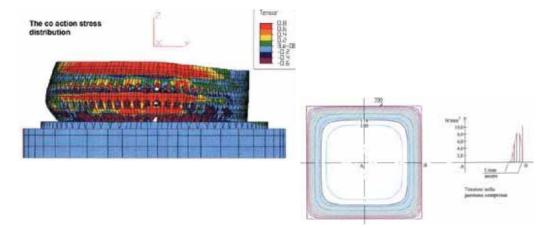


Mechanical model

79

# After fire Principles Assessment procedure Design for repair Case study Summary

## Historical structures Statistics Cultural value Technology Management Case studies


Notes



Sustainable Constructions under Natural Hazards and Catastrophic Events

#### The Colosseum fire 217 AD

Fire simulation by prof. Enzo Cartapati



Temperature of structure



#### The Colosseum fire 217 AD

Fire simulation by prof. Enzo Cartapati



Colosseum today

81

## After fire Principles Assessment procedure Design for repair Case study Summary

Sustainable Constructions under Natural Hazards

and Catastrophic Events

Historical
structures
Statistics
Cultural value
Technology
Management
Case studies

**Notes** 



Sustainable Constructions under Natural Hazards and Catastrophic Events

~u~co~

#### The Colosseum fire 217 AD

Virtual fire show 17.-19.9.2010



#### **List of Lessons at Seminar**

	1.	Fire safety	FW	
	2.	Fire and mechanical loading	FW	
	3.	Thermal response	FW	
	4.	Steel structures	JMF	
	5.	Concrete structures	JMF	
	6.	Composite structures	JMF	
	7.	Advanced models	JMF	
	8.	Composite floors	FW	
	9.	Aluminum structures	FW	
	10.	Timber structures	FW	
	11.	After fire and Historical structures	FW	
	12.	Overview of Explosion-blast Resistance	KHT	
V	13.	Response to blast	KHT	
	14.	P-I diagram	KHT	
	15.	Equivalent single degree	KHT	
	16.	Design example	KHT	
	17.	Definitions of <b>Design for Robustness</b>	JMD	
	18.	Global response of structures	JMD	
	19.	Design recommendations	JMD	
	20.	Alternative load path method	JMD	83



European Erasmus Mundus Master Course

Sustainable Constructions under Natural Hazards and Catastrophic Events

### Thank you for your attention

František WALD

wald@fsv.cvut.cz



After fire
Principles
Assessment
procedure
Design for
repair
Case study
Summary

Historical
structures
Statistics
Cultural value
Technology
Management
Case studies



and Catastrophic Events

#### **Sources**

- Chan D., 2009. Fire damage assessment of structural steel in a school, The Structural Engineer, 87 (19) 6 October, pp. 18-20.
- Concrete Society, 1990. Assessment and Repair of Fire-Damaged Concrete Structures, Technical Report No. 15, The Concrete Society, UK.
- Construction Industry Research and Information Association (CIRIA), 1986, Testing Concrete in Structures, A Guide to Equipment for Testing Concrete in Structures, Technical Report 143, CIRIA, UK.
- Dias W. P. S., 1992. Some properties of hardened cement paste and reinforcing bars upon cooling from elevated temperatures, *Fire and Materials*, 16 (1), pp. 29-35.
- Hajpál M. 2008. Heat effect by natural stones used by historical monuments, 11th International Congress on Deterioration and Conservation of Stone (STONE 2008).

After fire
Principles
Assessment
procedure
Design for
repair
Case study
Summary

Historical
structures
Statistics
Cultural value
Technology
Management
Case studies



Sustainable Constructions under Natural Hazards and Catastrophic Events

#### Sources

- Hajpál M., Török Á. 2004. Physical and mineralogical changes in sandstones due to fire and heat. *Environmental Geology*, 46, 3, 306-312.
- Kirby, B.R., Lapwood, D.G. & Thomson, G., 1986. The Reinstatement of Fire Damaged Steel and Iron Framed Structures, British Steel Corporation (now Corus), London, p. 46
- Outinen, J., Mäkeläinen, P., 2004. Mechanical properties of structural steel at elevated temperatures and after cooling Fire and Materials, 28 (2-4), pp. 237-251.
- Pang P. T. C., 2006. Fire engineering design and post fire assessment, The Structural Engineer 84, (16) 6 October, pp.23-29.
- Steel Construction Industry Forum (SCIF), 1991. Structural Fire Engineering: Investigation of Broadgate Phase 8 Fire, Steel Construction Institute, UK.

After fire
Principles
Assessment
procedure
Design for
repair
Case study
Summary

Historical structures Statistics Cultural value Technology Management Case studies

**Notes** 



under Natural Hazards and Catastrophic Events

#### Sources

- The Institution of Structural Engineers (ISE), 1996. Appraisal of Existing Structures, Institution of Structural Engineers, London, UK.
- Török Á., Hajpál M. 2005. Effect of Temperature Changes on the Mineralogy and Physical properties of Sandstones. A Laboratory Study. International Journal for Restoration of Buildings and Monuments, 11, 4, Freiburg, 211-217.
- Vácha, J., 2006. Reconstruction of coal feeding bridge after fire. in Czech Rekonstrukce zauhlovacích mostů po požáru, Konstrukce, 01, pp. 22-24. ISSN 1803-8433.
- Wang Y.C., Wald F., Török A., Hajpál M., 2008. Fire damaged structures, in *Technical sheets – Urban habitat constructions under* catastrophic events, Print Pražská technika, Czech Technical University in Prague, ISBN 978-80-01-04268-7.
- Yan, X., Li, H., Wong, Y. L., 2007. Assessment and repair of fire-damaged high-strength concrete: Strength and durability *Journal of Materials in Civil Engineering* 19 (6), pp. 462-469.

After fire
Principles
Assessment
procedure
Design for
repair
Case study
Summary

Historical structures Statistics Cultural value Technology Management Case studies



and Catastrophic Events

#### **Sources**

- Ingval Maxwell I:. COST Action C17, Built Heritage: Fire Loss to Historic Buildings - Executive Summary of Recommendations, Historic Scotland, Edinburgh 2007, ISBN 978 1 904966 53 1.
- Cartapati E., Cerone M., The Colosseum fire: 217 AD,
   COST Action C17: Built Heritage: Fire Loss to Historic Buildings:
   Conference Proceedings Part 4, Rome, 2006.