

L5: TORSION OF MEMBERS

Viorel Ungureneanu

Lecture: 19/02/2014

European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and Catastrophic Events 520121-1-2011-1-CZ-ERA MUNDUS-EMMC

rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Theoretical background

Sustainable Constructions under Natural Hazards and Catastrophic Events

Torsion results from **forces** that do not pass through the shear centre of the cross-section.

Torsion results from **forces** that do not pass through the shear centre of the cross-section.

Although torsion is not a predominant internal force in steel structures (compared to bending moment, shear or axial force), the analysis and design of steel members under torsion is covered by EN 1993-1-1.

Torsion results from **forces** that do not pass through the shear centre of the cross-section.

Although torsion is not a predominant internal force in steel structures (compared to bending moment, shear or axial force), the analysis and design of steel members under torsion is covered by EN 1993-1-1.

On the other <u>hand</u>, <u>some of the instability phenomena that</u> <u>may occur in steel members</u> (particularly lateral-torsional buckling of beams and flexural-torsional buckling of columns) <u>depend on the behaviour in torsion</u>.

TORSION FUNDAMENTALS

The <u>shear center</u> is the point through which the applied loads must pass to produce bending without twisting.

If a cross-section has a line of symmetry, the shear center will always lie on that line. For cross-sections with two lines of symmetry, the shear center is at the intersection of those lines (as is the centroid).

Sustainable Constructions under Natural Hazards and Catastrophic Events

Theoretical background

TORSION FUNDAMENTALS

Sustainable Constructions under Natural Hazards and Catastrophic Events

Theoretical background

TORSION FUNDAMENTALS

rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Theoretical background

When a member is subjected to a torsional moment T, the cross-sections rotate around the longitudinal axis of the member (axis that is defined by the shear centre of the cross-sections) and warp, i.e. they undergo differential longitudinal displacements, and plane sections no longer remain plane.

When a member is subjected to a torsional moment *T*, the cross-sections rotate around the longitudinal axis of the member (axis that is defined by the shear centre of the cross-sections) and warp, i.e. they undergo differential longitudinal displacements, and plane sections no longer remain plane.

If <u>warping is free</u>, which happens when the supports do not prevent it and the torsional moment is constant, the member is said to be under *uniform torsion* or *St. Venant torsion*.

When a member is subjected to a torsional moment *T*, the cross-sections rotate around the longitudinal axis of the member (axis that is defined by the shear centre of the cross-sections) and warp, i.e. they undergo differential longitudinal displacements, and plane sections no longer remain plane.

If <u>warping is free</u>, which happens when the supports do not prevent it and the torsional moment is constant, the member is said to be under *uniform torsion* or *St. Venant torsion*.

If the torsional moment is variable or <u>warping is restrained</u> at any cross section (usually at the supports), the member is under *non-uniform torsion*.

rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Theoretical background

rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Theoretical background

Theoretical background

Uniform torsion induces distortion that is caused by the rotation of the cross-sections around the longitudinal axis.

(a) Torsion with unrestrained warping

Uniform torsion induces distortion that is caused by the rotation of the cross-sections around the longitudinal axis.

 \Rightarrow shear stresses appear to balance the applied torsional moment T;

(a) Torsion with unrestrained warping

Uniform torsion induces distortion that is caused by the rotation of the cross-sections around the longitudinal axis.

- \Rightarrow shear stresses appear to balance the applied torsional moment *T*;
- \Rightarrow the resistance to the torsional moment *T* exclusively results from St. Venant's torsion, *T_t*.

Uniform torsion induces distortion that is caused by the rotation of the cross-sections around the longitudinal axis.

- \Rightarrow shear stresses appear to balance the applied torsional moment *T*;
- ⇒ the resistance to the torsional moment T exclusively results from St. Venant's torsion, T_t .
- ⇒ although longitudinal warping displacements may exist, they do not introduce stresses.

Uniform torsion induces distortion that is caused by the rotation of the cross-sections around the longitudinal axis.

- \Rightarrow shear stresses appear to balance the applied torsional moment *T*;
- ⇒ the resistance to the torsional moment T exclusively results from St. Venant's torsion, T_t .
- ⇒ although longitudinal warping displacements may exist, they do not introduce stresses.

Theoretical background

In non-uniform torsion, besides the St. Venant shear stresses, longitudinal strains also exist (because warping varies along the member).

In non-uniform torsion, besides the St. Venant shear stresses, longitudinal strains also exist (because warping varies along the member).

These longitudinal strains generate self-equilibrating normal stresses at the cross-sectional level that, depending on the level of restriction to warping, vary along the member.

In non-uniform torsion, besides the St. Venant shear stresses, longitudinal strains also exist (because warping varies along the member).

These longitudinal strains generate self-equilibrating normal stresses at the cross-sectional level that, depending on the level of restriction to warping, vary along the member.

The existence of varying normal stresses implies (by equilibrium in the longitudinal direction) the existence of additional shear stresses that also resist to torsional moments, leading to:

In non-uniform torsion, besides the St. Venant shear stresses, longitudinal strains also exist (because warping varies along the member).

These longitudinal strains generate self-equilibrating normal stresses at the cross-sectional level that, depending on the level of restriction to warping, vary along the member.

The existence of varying normal stresses implies (by equilibrium in the longitudinal direction) the existence of additional shear stresses that also resist to torsional moments, leading to:

(b) Torsion with restrained warping

Sustainable Constructions under Natural Hazards and Catastrophic Events

Theoretical background

The applied torsional moment *T* is thus balanced by two terms: -one due to the torsional rotation of the cross-section (T_t) and; -the other caused by the restraint to warping, designated by warping torsion (T_w).

In cross-sections of circular shape, because they exhibit rotational symmetry with respect to the shear centre C (that coincides with the centroid G), only uniform torsion exists.

Theoretical background

In cross-sections of circular shape, because they exhibit rotational symmetry with respect to the shear centre C (that coincides with the centroid G), only uniform torsion exists.

rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Theoretical background

rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Theoretical background

rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Theoretical background

In thin-walled closed cross-sections (<u>the most appropriate to resist</u> <u>torsion</u>), uniform torsion is predominant.

 \Rightarrow Therefore, in the analysis of thin-walled closed cross-sections subjected to torsion, the warping torsion (T_w) is normally neglected.

In case of members with thin-walled open cross-sections (such as I or H sections), where only the uniform torsion component appears, it is necessary that the supports do not prevent warping and than the torsional moment is constant.

In case of members with thin-walled open cross-sections (such as I or H sections), where only the uniform torsion component appears, it is necessary that the supports do not prevent warping and than the torsional moment is constant.

On the opposite, if the torsional moment is variable or warping is restrained at some cross-sections (usual situation), the member is under non-uniform torsion.

In case of members with thin-walled open cross-sections (such as I or H sections), where only the uniform torsion component appears, it is necessary that the supports do not prevent warping and than the torsional moment is constant.

On the opposite, if the torsional moment is variable or warping is restrained at some cross-sections (usual situation), the member is under non-uniform torsion.

rurcor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Theoretical background

In conclusion:

Sustainable Constructions under Natural Hazards and Catastrophic Events

In conclusion:

•torsional moments cause twisting and warping of the crosssections.

In conclusion:

•torsional moments cause twisting and warping of the crosssections.

•then torsional rigidity (GI_t) is very large compared with its warping rigidity (EI_w) , the section would effectively be in uniform torsion and warping moment would be unlikely to be significant.

In conclusion:

•torsional moments cause twisting and warping of the crosssections.

•then torsional rigidity (GI_t) is very large compared with its warping rigidity (EI_w) , the section would effectively be in uniform torsion and warping moment would be unlikely to be significant.

•the warping moment is developed only if warping deformation is restrained.
rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Theoretical background

The figure compares section properties for four different shapes of equal area.

Section type	Flat	H-Sections (Typical)	I-Sections (Typical)	Hollow sections (Typical)
Section properties		Τ	Ι	
A Area	1	1	1	1
I v (Vertical loading)	1	0,35	1	0,2
I z (Horizontal loading)	0,2	3,5	1	3,5
_t (Twisting)	1	1	1	100

Types of cross-section used as beams showing relative values of section properties

rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Theoretical background

The figure compares section properties for four different shapes of equal area.

The figure shows the high torsional stiffness in case of closed cross-sections.

Section type	Flat	H-Sections (Typical)	I-Sections (Typical)	Hollow sections (Typical)
Section properties		T	Ι	
A Area	1	1	1	1
I v (Vertical loading)	1	0,35	1	0,2
I z (Horizontal loading)	0,2	3,5	1	3,5
_t (Twisting)	1	1	1	100

Types of cross-section used as beams showing relative values of section properties

For a member under uniform torsion, the angle of rotation per unit length is related to the torsional moment through the following equation:

$$\frac{T_t}{GI_t} = \frac{d\varphi}{dx}$$

For a member under uniform torsion, the angle of rotation per unit length is related to the torsional moment through the following equation:

$$\frac{T_t}{GI_t} = \frac{d\varphi}{dx}$$

where

 $T_{\rm t}$ = is the torsional moment;

 $I_{\rm t}$ = is the torsion constant;

G = is the shear modulus;

 φ = is the twist of the section;

x = is a variable with the direction of the longitudinal axis of the member.

The shear stresses due to uniform torsion are obtained according to different methodologies (some are exact and others approximate), depending on the shape of the cross-section.

•for <u>cross-sections with circular shape</u>, the shear stresses vary linearly with the distance to the shear centre.

rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Uniform torsion

• in <u>thin-walled open cross-sections</u> (sections composed by rectangles with $h_i/t_i > 10$, where h_i and t_i are the height and the thickness of the rectangles that constitute the section) approximate expressions are used for the evaluation of the maximum stress.

• in <u>thin-walled open cross-sections</u> (sections composed by rectangles with $h_i/t_i > 10$, where h_i and t_i are the height and the thickness of the rectangles that constitute the section) approximate expressions are used for the evaluation of the maximum stress.

Shear stresses and torsion constant for typical steel cross-section shapes:

a) Circular section b) Rectangular hollow section c) I section Section Shear stress Torsion constant Circular (solid or hollow) $I_T = I_p$ τ_t Thin-walled closed $I_T =$ $2A_m$ Thin-walled open $\tau_{t,\max} \approx \frac{1}{I_T}$ $I_T \approx$ τ_{i,máx}

 A^2t

Shear stresses and torsion constant for typical steel cross-section shapes:

Section	Shear stress	Torsion constant]
Circular (solid or hollow)	$\tau_t = \frac{T}{I_p} r$	$I_T = I_p$	
Thin-walled closed	$\tau_t = \frac{T}{2A_m t}$	$I_T = \frac{4A_m^2}{\oint \frac{ds}{t}}$	$I_t = -$
Thin-walled open	$\tau_{t,\max} \approx \frac{T}{I_T} t_{i,m\acute{a}x}$	$I_T \approx \frac{1}{3} \sum_{i=1}^n h_i t_i^3$	

rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Non-uniform torsion

rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Non-uniform torsion

This in-plane bending of the flanges is clockwise for one flange and anticlockwise for the other so that the effect is that of two equal and opposite moments.

This in-plane bending of the flanges is clockwise for one flange and anticlockwise for the other so that the effect is that of two equal and opposite moments.

This in-plane bending of the flanges is clockwise for one flange and anticlockwise for the other so that the effect is that of two equal and opposite moments.

This type of behaviour was the subject of a classical investigation by Vlaslov who termed this force system induced in the flanges by warping restraint a *bi-moment*.

- \Rightarrow a generic section at a distance *x* from the support is subjected to the following deformations:
- $\varphi(x)$ rotations around the axis of the member, due to uniform torsion T_t ;
- transverse displacements of the upper flange $(v_{sup}(x))$ and lower flange $(v_{inf}(x))$ due to bending in its own plane (around z), due to the additional component T_w .

In the cross-section of a member under non-uniform torsion, shear stresses τ_t also appear due to $\varphi(x)$ rotations, which are obtained according to the uniform torsion theory.

In the cross-section of a member under non-uniform torsion, shear stresses τ_t also appear due to $\varphi(x)$ rotations, which are obtained according to the uniform torsion theory.

Because of the lateral bending of the flanges normal stresses σ_w appear and additional shear stresses τ_{w} .

In the cross-section of a member under non-uniform torsion, shear stresses τ_t also appear due to $\varphi(x)$ rotations, which are obtained according to the uniform torsion theory.

Because of the lateral bending of the flanges normal stresses σ_w appear and additional shear stresses τ_{w} .

The normal stresses σ_w are calculated from the pair of moments M_{sup} or M_{inf} , based on the so-called bi-moment, i.e.

$$B = M_{\sup} h_m (= M_{\inf} h_m)$$

Shear stresses τ_w , which develop in the flanges, are due to the pair of shear forces V_{sup} and V_{inf} , statically equivalent to the warping torsion, T_w ,

$$T_w = V_{\sup} h_m (= V_{\inf} h_m)$$

The differential equation of a member subject to non-torsion starts from:

 I_{fz} is the second moment of the flange area with respect to the z axis.

$$M_{sup} = -\frac{d^2 \varphi(x)}{dx^2} E I_{fz} \frac{h_m}{2};$$

$$\Rightarrow V_{sup} = -\frac{d^3 v_{sup}(x)}{dx^3} E I_{fz} = -\frac{d^3 \varphi(x)}{dx^3} E I_{fz} \frac{h_m}{2}$$

Sustainable Constructions under Natural Hazards and Catastrophic Events

The warping torsion, T_w is:

The warping torsion, T_w is:

$$T_{w} = V_{\sup}h_{m} = -EI_{fz} \frac{h_{m}^{2}}{2} \frac{d^{3}\varphi(x)}{dx^{3}} = -EI_{w} \frac{d^{3}\varphi(x)}{dx^{3}}$$

The warping torsion, T_w is:

$$T_{w} = V_{\sup}h_{m} = -EI_{fz} \frac{h_{m}^{2}}{2} \frac{d^{3}\varphi(x)}{dx^{3}} = -EI_{w} \frac{d^{3}\varphi(x)}{dx^{3}}$$

where, for a thin-walled I-section $I_{fz} \cong I_z/2$ and $I_w = \frac{I_{fz} h_m^2}{2} \cong \frac{I_z h_m^2}{4}$

is the warping constant and EI_w is the warping stiffness of the section.

The warping torsion, T_w is:

$$T_{w} = V_{\sup}h_{m} = -EI_{fz}\frac{h_{m}^{2}}{2}\frac{d^{3}\varphi(x)}{dx^{3}} = -EI_{w}\frac{d^{3}\varphi(x)}{dx^{3}}$$

where, for a thin-walled I-section $I_{fz} \cong I_z/2$ and $I_w = \frac{I_{fz}h_m^2}{2} \cong \frac{I_zh_m^2}{4}$

is the warping constant and EI_w is the warping stiffness of the section.

Finally, the differential equation of non-uniform torsion is:

$$T = T_t(x) + T_w(x) = GI_t \frac{d\varphi(x)}{dx} - EI_w \frac{d^3\varphi(x)}{dx^3}$$

The warping torsion, T_w is:

$$T_{w} = V_{\sup}h_{m} = -EI_{fz}\frac{h_{m}^{2}}{2}\frac{d^{3}\varphi(x)}{dx^{3}} = -EI_{w}\frac{d^{3}\varphi(x)}{dx^{3}}$$

where, for a thin-walled I-section $I_{fz} \cong I_z/2$ and $I_w = \frac{I_{fz} h_m^2}{2} \cong \frac{I_z h_m^2}{4}$

is the warping constant and EI_w is the warping stiffness of the section.

Finally, the differential equation of non-uniform torsion is:

$$T = T_t(x) + T_w(x) = GI_t \frac{d\varphi(x)}{dx} - EI_w \frac{d^3\varphi(x)}{dx^3}$$

the general equation for the torsion of a non-circular section

rurcor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Warping constant for typical cross-sections

Section	I_W
Circular (solid or hollow)	0
Thin-walled closed	≈ 0
I or H of equal $flanges$ t_r t_r t_r t_r t_r h_w	$\frac{t_f h_m^2 b^3}{24}$
I or H of unequal flanges b_1 t_1 h_m b_1 h_m h_m h_m	$\frac{t_{f} h_{m}^{2}}{12} \frac{b_{1}^{3} b_{2}^{3}}{b_{1}^{3} + b_{2}^{3}}$
Channel	$\frac{t_f b^3 h_m^2}{12} \frac{3b t_f + 2h_m t_w}{6b t_f + h_m t_w}$
L, T or cross-shaped sections	0

The evaluation of the longitudinal stresses and shear stresses due to an applied torque requires the solution of this equation with appropriate boundary conditions.

By differentiation
$$\frac{dT(x)}{dx} = -EI_w \frac{d^4\varphi(x)}{dx^4} + GI_t \frac{d^2\varphi(x)}{dx^2} = -m(x)$$

or
$$\frac{d^4\varphi(x)}{dx^4} - k^2 \frac{d^2\varphi(x)}{dx^2} = \frac{m(x)}{EI_w}$$

where

$$k = \sqrt{\frac{GI_t}{EI_w}}$$

m is the intensity of a distributed torsional moment (m = 0 for a concentrated torsional moment).

In order to calculate values of bi-moment and then to evaluate the stresses arising from restrained warping, it is necessary to obtain solutions of the equation for torsion!

In order to calculate values of bi-moment and then to evaluate the stresses arising from restrained warping, it is necessary to obtain solutions of the equation for torsion!

The general solution is:

```
\varphi = C_1 \cosh kx + C_2 \sinh kx + C_3 x + C_4 + \varphi_0
```

where C_1 to C_4 are constants; φ_0 is the particular solution.

In order to calculate values of bi-moment and then to evaluate the stresses arising from restrained warping, it is necessary to obtain solutions of the equation for torsion!

The general solution is:

$$\varphi = C_1 \cosh kx + C_2 \sinh kx + C_3 x + C_4 + \varphi_0$$

where

 C_1 to C_4 are constants; φ_0 is the particular solution.

$$\varphi_0 = 0$$
 for $m = 0$
 $\varphi_0 = \frac{mx^2}{2GI_t}$ for uniform m

In order to calculate values of bi-moment and then to evaluate the stresses arising from restrained warping, it is necessary to obtain solutions of the equation for torsion!

The general solution is:

$$\varphi = C_1 \cosh kx + C_2 \sinh kx + C_3 x + C_4 + \varphi_0$$

where

 C_1 to C_4 are constants;

 φ_0 is the particular solution.

$$\varphi_0 = 0$$
 for $m = 0$
 $\varphi_0 = \frac{mx^2}{2GI_t}$ for uniform m

 \Rightarrow The particular solution is connected with load distribution

The values of the constants C_1 to C_4 are determined by substituting known boundary conditions, i.e.
The values of the constants C_1 to C_4 are determined by substituting known boundary conditions, i.e.

The two most common idealised support conditions are:

The values of the constants C_1 to C_4 are determined by substituting known boundary conditions, i.e.

The two most common idealised support conditions are: (1) Fixed end – one which is built-in and can neither twist nor warp, i.e.

The values of the constants C_1 to C_4 are determined by substituting known boundary conditions, i.e.

The two most common idealised support conditions are: (1) Fixed end – one which is built-in and can neither twist nor warp, i.e.

$$\varphi = 0$$
$$\frac{d\varphi}{dx} = 0$$

The values of the constants C_1 to C_4 are determined by substituting known boundary conditions, i.e.

The two most common idealised support conditions are:

(1) Fixed end – one which is built-in and can neither twist nor warp, i.e.

(2) Simply supported end – one which cannot twist but is free to warp and is therefore free of longitudinal stresses due to torsion

$$\begin{cases}
\varphi = 0 \\
\frac{d^2 \varphi}{dx^2} = 0 \quad \text{i.e.} \quad B = 0
\end{cases}$$

rurcor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Bi-moment variation for common boundary conditions

Load condition	Bimoment equation	Maxin	num values
	$B_{\omega} = -Ml \frac{\sinh k(l-x)}{kl \cdot \cosh kl}$	<i>x</i> = 0	$B_{\omega} = Mlb$
	$B_{\omega} = -\frac{m}{k^2 \cdot \cosh kl} \cdot [kl \cdot \sinh k (l-x) - \cosh kl + \cosh kx]$	<i>x</i> = 0	$B_{\omega} = ml^2c$
	$B_{\omega} = \frac{m}{k^2} \cdot \left[1 - \frac{\cosh k \left(\frac{l}{2} - x \right)}{\cosh \frac{kl}{2}} \right]$	$x = \frac{l}{2}$	$B_{\omega} = ml^2 p$
	$B_{\omega} = \frac{M}{2k} \cdot \frac{\sinh kx}{\cosh \frac{kl}{2}}$	$x = \frac{l}{2}$	$B_{\omega} = \frac{Ml}{2}f$
	$B_{\omega} = \frac{m}{k^2} \cdot \left[1 - \frac{kl \cdot \cosh k \left(\frac{l}{2} - x\right)}{2 \cdot \sinh \frac{kl}{2}} \right]$	$x = 0$ $x = l$ $x = \frac{l}{2}$	$B_{\omega} = ml^2 g$ $B_{\omega} = ml^2 j$

rurcor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Bi-moment variation for common boundary conditions

Load condition	Bimoment equation	Maximum values		
	$B_{\omega} = \frac{M}{2k} \cdot \frac{\cosh kx - \cosh k \left(\frac{l}{2} - x\right)}{\sinh \frac{kl}{2}}$	$x = 0$ $x = \frac{l}{2}$ $x = l$	$B_{\omega} = \frac{Ml}{2}n$	
	$B_{\omega} = \frac{m}{k^2} \cdot [1 - \cosh kx + \frac{1 + kl \cdot \sinh kl - \cosh kl - \frac{k^2 l^2}{2}}{kl \cdot \cosh kl - \sin h kl} \cdot \sinh kx$	x = l	$B_{\omega} = \frac{ml}{2}w$	
$ \begin{array}{c} $	$B_{\omega 1} = \frac{M}{k} \cdot \frac{1}{kl \cdot \sinh kl - \sinh kl} \cdot \frac{1}{kl \cdot \sinh kl - \sinh kl} \cdot \frac{1}{kl \cdot \cosh \frac{kl}{2} - \sinh \frac{kl}{2} - \frac{kl}{2} \cdot \sinh kx}$ $B_{\omega 2} = \frac{M}{k} \cdot \left[\frac{\sinh \cdot kx}{kl \cdot \cosh kl - \sinh kl} \cdot \frac{1}{kl \cdot \cosh kl - \sinh kl} \cdot \frac{1}{kl \cdot \cosh \frac{kl}{2} - \sinh \frac{kl}{2} - \sinh k\left(x - \frac{l}{2}\right)} \right]$	$x = \frac{l}{2}$ $x = l$	$B_{\omega} = \frac{Ml}{2}v$ $B_{\omega} = \frac{Ml}{2}u$	
$b = \frac{\tanh kl}{kl}; \ c = \frac{kl \cdot \sinh kl - \cosh kl + 1}{k^2 l^2 \cosh kl}; \ p = \frac{\cosh \frac{kl}{2} - 1}{k^2 l^2 \cosh \frac{kl}{2}}; \ f = \frac{\cosh kl - 1}{kl \sinh kl}$				
$g = \frac{\frac{kl}{2}(\cosh kl+1) - \sinh kl}{k^2 l^2 \sinh kl}; j = \frac{\sinh kl - kl \cosh \frac{kl}{2}}{k^2 l^2 \sinh kl}; n = \frac{\sinh kl - 2\sinh \frac{kl}{2}}{kl (\cosh kl-1)}$				
$v = \frac{kl \sinh kl - \cosh kl + 1 - kl \sinh \frac{kl}{2}}{kl(kl \cosh kl - \sinh kl)}; w = \frac{kl \sinh kl - 2\cosh kl + 2}{kl(kl \cosh kl - \sinh kl)}; u = \frac{\sinh kl - 2\sinh \frac{kl}{2}}{kl \cosh kl - \sinh kl}$				

- - - - - -

Sustainable Constructions under Natural Hazards and Catastrophic Events

Torsion in simply supported beam with free end warping

Sustainable Constructions under Natural

Torsion in Cantilevers

DESIGN FOR TORSION (clause 6.2.7, EN 1993-1-1)

For members subject to torsion for which distortional deformations may be disregarded the design value of the torsional moment T_{Ed} at each cross-section should satisfy:

DESIGN FOR TORSION (clause 6.2.7, EN 1993-1-1)

For members subject to torsion for which distortional deformations may be disregarded the design value of the torsional moment T_{Ed} at each cross-section should satisfy:

 T_{Rd} is the design torsional resistance of the cross section

DESIGN FOR TORSION (clause 6.2.7, EN 1993-1-1)

For members subject to torsion for which distortional deformations may be disregarded the design value of the torsional moment T_{Ed} at each cross-section should satisfy:

 T_{Rd} is the design torsional resistance of the cross section

The total torsional moment T_{Ed} at any cross- section should be considered as the sum of two internal effects:

$$T_{Ed} = T_{t,Ed} + T_{w,Ed}$$

 $T_{t,Ed}$ is the internal St. Venant torsion; $T_{w,Ed}$ is the internal warping torsion.

The values of $T_{t,Ed}$ and $T_{w,Ed}$ at any cross-section may be determined from T_{Ed} by elastic analysis, taking account of the section properties of the cross-section of the member, the conditions of restraint at the supports and the distribution of the actions along the member.

The values of $T_{t,Ed}$ and $T_{w,Ed}$ at any cross-section may be determined from T_{Ed} by elastic analysis, taking account of the section properties of the cross-section of the member, the conditions of restraint at the supports and the distribution of the actions along the member.

The following stresses due to torsion should be taken into account:

- the shear stresses $\tau_{t,Ed}$ due to St. Venant torsion $T_{t,Ed}$
- the direct stresses $\sigma_{w,Ed}$ due to the bi-moment B_{Ed} and shear stresses $\tau_{w,Ed}$ due to warping torsion $T_{w,Ed}$.

In cross-sections subject to torsion, the following conditions should be satisfied:

$$\begin{aligned} \sigma_{tot,Ed} &\leq f_y / \gamma_{M0} \\ \hline & \tau_{tot,Ed} \leq \frac{f_y / \sqrt{3}}{\gamma_{M0}} \\ \hline & \sqrt{\sigma_{tot,Ed}^2 + 3 \cdot \tau_{tot,Ed}^2} \leq 1.1 \frac{f_y}{\gamma_{M0}} \end{aligned}$$

- $\sigma_{tot,Ed}$ is the total longitudinal stress, calculated on the relevant cross-section;
- $\tau_{tot,Ed}$ is the total shear stress, calculated on the gross cross-section.

The total longitudinal stress $\sigma_{tot,Ed}$ and the total shear stress $\tau_{tot,Ed}$ should by obtained from:

$$\sigma_{\text{tot,Ed}} = \sigma_{\text{N,Ed}} + \sigma_{\text{My,Ed}} + \sigma_{\text{Mz,Ed}} + \sigma_{\text{w,Ed}}$$

$$\tau_{tot,Ed} = \tau_{Vy,Ed} + \tau_{Vz,Ed} + \tau_{t,Ed} + \tau_{w,Ed}$$

where:

$\sigma_{My,Ed}$	is the direct stress due to the bending moment $M_{y,Sd}$;
$\sigma_{Mz,Ed}$	is the direct stress due to the bending moment $M_{z,Sd}$;
$\sigma_{N,Ed}$	is the direct stress due to the axial force N_{Sd} ;
$\sigma_{w,Ed}$	is the direct stress due to warping;
τ _{Vv.Ed}	is the shear stress due to the transverse shear force $V_{v,Sd}$;
τ _{Vz,Ed}	is the shear stress due to the transverse shear force $V_{z,Sd}$;
$ au_{t,Ed}$	is the shear stress due to uniform (St. Venant) torsion;
$ au_{w, Ed}$	is the shear stress due to warping.

Sustainable Constructions under Natural Hazards and Catastrophic Events

Instability phenomena that may occur in steel members depending on the behaviour in torsion

Sustainable Constructions under Natural Hazards and Catastrophic Events

Instability phenomena and torsion

Torsional or Flexural-Torsional Buckling

 $\beta = 1 - (\mathbf{y}_c / \mathbf{i}_c)^2$

Sustainable Constructions under Natural Hazards and Catastrophic Events Instability phenomena and torsion

$$\bar{\lambda} = \begin{bmatrix} \beta_A \frac{Af_y}{N_{cr}} \end{bmatrix}^{0.5} & \beta_A = 1 \text{ for class 1-3 sections} \\ \beta_A = A_{eff} / A \text{ for class 4 sections} \\ \varphi = 0.5[1 + \alpha(\bar{\lambda} - 0.2) + \bar{\lambda}^2] \\ \chi = \frac{1}{\phi + [\phi^2 - \bar{\lambda}^2]^{0.5}} \le 1$$

design buckling resistance N_{b,Rd}

Sustainable Constructions under Natural Hazards and Catastrophic Events Instability phenomena and torsion

Lateral-Torsional Buckling

Slender structural elements
 loaded in a stiff plane tend to
 fail by buckling in a more
 flexible plane.

Sustainable Constructions under Natural Hazards and Catastrophic Events

Lateral-Torsional Buckling

- Slender structural elements loaded in a stiff plane tend to fail by buckling in a more flexible plane.
- In the case of a beam bent about its major axis, failure may occur by a form of buckling which involves both lateral deflection and twisting.

Sustainable Constructions under Natural Hazards and Catastrophic Events

Instability phenomena and torsion

Lateral-Torsional Buckling

- Slender structural elements loaded in a stiff plane tend to fail by buckling in a more flexible plane.
- In the case of a beam bent about its major axis, failure may occur by a form of buckling which involves both lateral deflection and twisting.

rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Instability phenomena and torsion

Sustainable Constructions under Natural Hazards and Catastrophic Events

Instability phenomena and torsion

Perfectly elastic, initially straight, loaded by equal and opposite end moments about its major axis.

Sustainable Constructions under Natural Hazards and Catastrophic Events

Instability phenomena and torsion

Perfectly elastic, initially straight, loaded by equal and opposite end moments about its major axis.

u Unrestrained along its length.

Sustainable Constructions under Natural Hazards and Catastrophic Events

Instability phenomena and torsion

Perfectly elastic, initially straight, loaded by equal and opposite end moments about its major axis.

- u Unrestrained along its length.
- u End Supports ...
 - Twisting and lateral deflection prevented.
 - Free to rotate both in the plane of the web and on plan.

Sustainable Constructions under Natural Hazards and Catastrophic Events

Instability phenomena and torsion

Perfectly elastic, initially straight, loaded by equal and opposite end moments about its major axis.

M(

- u Unrestrained along its length.
- u End Supports ...
 - Twisting and lateral deflection prevented.
 - Free to rotate both in the plane of the web and on plan.

Sustainable Constructions under Natural Hazards and Catastrophic Events

Instability phenomena and torsion

Perfectly elastic, initially straight, loaded by equal and opposite end moments about its major axis.

M(

- u Unrestrained along its length.
- u End Supports ...
 - Twisting and lateral deflection prevented.
 - Free to rotate both in the plane of the web and on plan.

rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Instability phenomena and torsion

Sustainable Constructions under Natural Hazards and Catastrophic Events Instability phenomena and torsion

Critical Buckling Moment for uniform bending moment diagram is

Sustainable Constructions under Natural Hazards and Catastrophic Events

Critical Buckling Moment for uniform bending moment diagram is

$$M_{cr} = \frac{\pi^2 E I_z}{L^2} \sqrt{\left[\frac{I_w}{I_z} + \frac{L^2 G I_t}{\pi^2 E I_z}\right]}$$

Sustainable Constructions under Natural Hazards and Catastrophic Events

Critical Buckling Moment for uniform bending moment diagram is

$$M_{cr} = \frac{\pi^2 E I_z}{L^2} \sqrt{\left[\frac{I_w}{I_z} + \frac{L^2 G I_t}{\pi^2 E I_z}\right]}$$

Includes:

Sustainable Constructions under Natural Hazards and Catastrophic Events

Critical Buckling Moment for uniform bending moment diagram is

$$M_{cr} = \frac{\pi^2 E I_z}{L^2} \sqrt{\left[\frac{I_w}{I_z} + \frac{L^2 G I_t}{\pi^2 E I_z}\right]}$$

Includes:

•Lateral flexural stiffness EI_z

Sustainable Constructions under Natural Hazards and Catastrophic Events

Critical Buckling Moment for uniform bending moment diagram is

$$M_{cr} = \frac{\pi^2 E I_z}{L^2} \sqrt{\left[\frac{I_w}{I_z} + \frac{L^2 G I_t}{\pi^2 E I_z}\right]}$$

Includes:

- •Lateral flexural stiffness EI_z
- •Torsional and warping stiffnesses GI_t and EI_w

Sustainable Constructions under Natural Hazards and Catastrophic Events

Critical Buckling Moment for uniform bending moment diagram is

$$M_{cr} = \frac{\pi^2 E I_z}{L^2} \sqrt{\left[\frac{I_w}{I_z} + \frac{L^2 G I_t}{\pi^2 E I_z}\right]}$$

Includes:

- •Lateral flexural stiffness EI_z
- •Torsional and warping stiffnesses GI_t and EI_w

Their relative importance depends on the type of cross-section used.

rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Instability phenomena and torsion

rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Instability phenomena and torsion

EC3 expresses the elastic critical moment M_{cr} for a particular loading case as
rurcor

Sustainable Constructions under Natural Hazards and Catastrophic Events

EC3 expresses the elastic critical moment M_{cr} for a particular loading case as

$$M_{cr} = C_1 \frac{\pi}{L} \sqrt{EI_z GI_t} \sqrt{1 + \frac{\pi^2 EI_w}{L^2 GI_t}}$$

rureor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Instability phenomena and torsion

EC3 expresses the elastic critical moment M_{cr} for a particular loading case as

$$M_{cr} = C_1 \frac{\pi}{L} \sqrt{EI_z GI_t} \sqrt{1 + \frac{\pi^2 EI_w}{L^2 GI_t}}$$

Loads	Bending moment	M _{max}	C ₁
		Μ	1,00
		М	1,879
	\int	М	2,752
↓F T 1	\langle	FL/4	1,365
F t t		FL/8	1,132
		FL/4	1,046

Sustainable Constructions under Natural Hazards and Catastrophic Events

$$\overline{\lambda}_{LT} = \sqrt{W_y f_y / M_{cr}}$$
$$\varphi_{LT} = 0.5[1 + \alpha(\overline{\lambda}_{LT} - 0.2) + \overline{\lambda}_{LT}^2]$$

$$\chi_{LT} = \frac{1}{\phi_{LT} + [\phi_{LT}^2 - \overline{\lambda}_{LT}^2]^{0.5}} \le 1$$

design buckling resistance M_{b,Rd}

Hazards and Catastrophic Events

Avoiding, controlling and minimizing torsion

Sustainable Constructions under Natural Hazards and Catastrophic Events

•"Avoid Torsion - if you can!"

Sustainable Constructions under Natural Hazards and Catastrophic Events

•"Avoid Torsion - if you can!"

•The loads are usually applied in such a manner that their resultant passes through the centroid in the case of symmetrical sections and shear centre in the case of unsymmetrical sections.

Sustainable Constructions under Natural Hazards and Catastrophic Events

•The loads are usually applied in such a manner that their resultant passes through the centroid in the case of symmetrical sections and shear centre in the case of unsymmetrical sections.

•Arrange connections suitably.

Sustainable Constructions under Natural Hazards and Catastrophic Events

•The loads are usually applied in such a manner that their resultant passes through the centroid in the case of symmetrical sections and shear centre in the case of unsymmetrical sections.

•Arrange connections suitably.

•Where significant eccentricity of loading (which would cause torsion) is unavoidable, alternative methods of resisting torsion like design using box, tubular sections or lattice box girders should be investigated.

rurcor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Typical connection and support detail

(g) Full end stiffener

rurcor

Sustainable Constructions under Natural Hazards and Catastrophic Events

Typical connection and support detail

Sustainable Constructions under Natural

Hazards and Catastrophic Events

Sustainable Constructions under Natural Hazards and Catastrophic Events

Use anti-sag ties for purlins

Sustainable Constructions under Natural Hazards and Catastrophic Events

For example a rigid facade elements spanning between floors: the weight of which would otherwise induce torsional loading of the spandrel girder, may be designed to transfer lateral forces into the floor diaphragms and resist the eccentric effect.

Sustainable Constructions under Natural Hazards and Catastrophic Events

Hazards and Catastrophic Events

Otherwise ...

Sustainable Constructions under Natural Hazards and Catastrophic Events

Otherwise ...

Sustainable Constructions under Natural Hazards and Catastrophic Events

Otherwise ...

Viorel.ungureanu@upt.ro

http://steel.fsv.cvut.cz/suscos

