Să se determine momentele de inerție principale şi poziția axelor de inerție principale pentru secțiunea din figura de mai jos:

- Determinarea poziției centrului de greutate

$$
\begin{array}{lll}
A_{1}=15 \cdot 1=15 \mathrm{~cm}^{2} & A_{2}=25 \cdot 0.6=15 \mathrm{~cm}^{2} & A_{3}=10 \cdot 1.2=12 \mathrm{~cm}^{2} \quad A_{4}=10 \cdot 1=10 \mathrm{~cm}^{2} \\
I_{y 1}=\frac{15 \cdot 1^{3}}{12}=1.25 \mathrm{~cm}^{4} & I_{y 2}=\frac{0.6 \cdot 25^{3}}{12}=781.25 \mathrm{~cm}^{\angle} & I_{y 3}=\frac{1.2 \cdot 10^{3}}{12}=100 \mathrm{~cm}^{4} \quad I_{y 4}=\frac{10 \cdot 1^{3}}{12}=0.83 \mathrm{~cm}^{4} \\
I_{z 1}=\frac{1 \cdot 15^{3}}{12}=281.25 \mathrm{~cm}^{<} \quad I_{z 2}=\frac{25 \cdot 0.6^{3}}{12}=0.45 \mathrm{~cm}^{4} & I_{z 3}=\frac{10 \cdot 1.2^{3}}{12}=1.44 \mathrm{~cm}^{<} \quad I_{z 4}=\frac{1 \cdot 10^{3}}{12}=83.33 \mathrm{~cm}^{2}
\end{array}
$$

$$
\begin{aligned}
& y_{0 G}=\frac{\sum y_{0 i} \cdot A_{i}}{\sum A_{i}}=\frac{(-10.3) \cdot 12+(-4.7) \cdot 10}{15+15+12+10}=-1.14 \mathrm{~cm} \\
& z_{0 G}=\frac{\sum z_{0 i} \cdot A_{i}}{\sum A_{i}}=\frac{13 \cdot 15+21.5 \cdot 12+26 \cdot 10}{15+15+12+10}=13.71 \mathrm{~cm}
\end{aligned}
$$

- Momentele de inerție in raport cu axele centrale
$I_{y}=I_{y 1}+I_{y 2}+I_{y 3}+I_{y 4}+z_{1}^{2} \cdot A_{1}+z_{2}^{2} \cdot A_{2}+z_{3}^{2} \cdot A_{3}+z_{4}^{2} \cdot A_{4}$
$z_{1}=-z_{0 G}=-13.71 \mathrm{~cm}$
$z_{2}=-\left(z_{0 G}-z_{02}\right)=-(13.71-13)=-0.71 \mathrm{~cm}$
$z_{3}=z_{03}-z_{0 G}=21.5-13.71=7.79 \mathrm{~cm}$
$z_{4}=z_{04}-z_{0 G}=26-13.71=12.29 \mathrm{~cm}$
$\Rightarrow I_{y}=1.25+781.25+100+0.83+(-13.71)^{2} \cdot 15+(-0.71)^{2} \cdot 15+(7.79)^{2} \cdot 12+(12.29)^{2} \cdot 10=5949 \mathrm{~cm}^{4}$
$I_{z}=I_{z 1}+I_{z 2}+I_{z 3}+I_{z 4}+y_{1}^{2} \cdot A_{1}+y_{2}^{2} \cdot A_{2}+y_{3}^{2} \cdot A_{3}+y_{4}^{2} \cdot A_{4}$
$y_{1}=y_{2}=y_{0 G}=1.14 \mathrm{~cm}$
$y_{3}=-\left(y_{03}-y_{0 G}\right)=-(10.3-1.14)=-9.16 \mathrm{~cm}$
$y_{4}=-\left(y_{04}-y_{0 G}\right)=-(4.7-1.14)=-3.56 \mathrm{~cm}$
$\Rightarrow I_{z}=281.25+0.45+1.44+83.33+(1.14)^{2} \cdot 15+(1.14)^{2} \cdot 15+(-9.16)^{2} \cdot 12+(-3.56)^{2} \cdot 10=1539 \mathrm{~cm}^{4}$
$I_{y z}=I_{y 1 z 1}+I_{y 2 z 2}+I_{y 3 z 3}+I_{y 4 z 4}+y_{1} \cdot z_{1} \cdot A_{1}+y_{2} \cdot z_{2} \cdot A_{2}+y_{3} \cdot z_{3} \cdot A_{3}+y_{4} \cdot z_{4} \cdot A_{4}$
$I_{y 1 z 1}=I_{y 2 z 2}=I_{y 3 z 3}=I_{y 4 z 4}=0 \quad$ deoarece au cel putin o axa de simetrie
$\Rightarrow I_{y z}=(1.14)(-13.71) \cdot 15+(1.14)(-0.71) \cdot 15+(-9.16)(7.79) \cdot 12+(-3.56)(12.29) \cdot 10=-1540.38 \mathrm{~cm}^{4}$
- Momentele de inerție principale
$I_{1,2}=\frac{I_{y}+I_{z}}{2} \pm \frac{1}{2} \cdot \sqrt{\left(I_{y}-I_{z}\right)^{2}+4 \cdot I_{y z}^{2}}$
$\Rightarrow I_{1,2}=\frac{5949+1539}{2} \pm \frac{1}{2} \cdot \sqrt{(5949-1539)^{2}+4 \cdot(-1540.38)^{2}}$
$I_{1,2}=3744 \pm \frac{1}{2} \cdot 5379.5$
$I_{1}=6433.75 \mathrm{~cm}^{4}$
$I_{2}=1054.24 \mathrm{~cm}^{4}$

- Poziția axelor de inerție principale
$\operatorname{tg} 2 \alpha=-\frac{2 \cdot I_{y z}}{I_{y}-I_{z}}=-\frac{2 \cdot(-1540.38)}{5949-1539}=0.698$
- $2 \alpha=34.94^{\circ}$
$\square 2 \alpha-\pi=-145.06^{\circ}$
dar $\frac{\operatorname{tg} 2 \alpha}{I_{y z}} \prec 0$ si $I_{y z} \prec 0$
$\Rightarrow 2 \alpha=34.94^{\circ} \Rightarrow \alpha=17.47^{\circ}$

