Application nr. 2 (Global Analysis)

Effects of deformed geometry of the structures. Structural stability of frames. Sway frames and non-sway frames.

Object of study: multistorey structure (SAP 2000 Nonlinear)

Grid of axes and positions of column cross-section in the structure

PART 1: Transversal plane frame extracted from the structure:

Cross-sections for plane frame columns and beams (profiles):

Labels of columns and beams (names) :

Consider global sway of the structure (expressed by global rotation Φ)

Index for the effects of deformed geometry:

Structural behavior and terminology associated with (α_{cr}) values:

$\alpha_{cr} > 10,0$	3,0 ≤ $α_{cr}$ ≤ 10,0	$\alpha_{cr} < 3,0$		
The structure is rigid or non-sway	The structure is flexible or sway			
<u>No sensitivity</u> to deformed	Moderate or high sensitivity to deformed geometry			
geometry	(to implement in structural analysis)			

Methods of determining α_{cr}

Computer method of determining the critical load factor for elastic buckling of the frame	Approximate method to find (α_{cr}) by calculation, valid under limited conditions using the formula:		
(α _{cr}) via (SAP 2000 N) buckling analysis with imperfections	$\alpha_{cr} = \left(\frac{H_{Ed}}{V_{Ed}}\right) \cdot \left(\frac{h}{\delta_{H,Ed}}\right)$		

Significance of the terms in the formula: H_{Ed} and V_{Ed} (h=storey height)

Conditions to apply approximating formula:

•Types of structures for applicability: portal frames with shallow roof slopes (i.e. <1:2 or 26°) or beam-and-column plane frames in buildings

Conditions to formula applicability (2):

- The **compression** in beams or rafters is **not** significant.
- The axial compression in the beams or rafters may be assumed to be <u>significant</u> on the following condition:

$$\overline{\lambda} \ge 0, 3 \cdot \sqrt{\frac{A \cdot f_y}{N_{Ed}}}$$

 λ = in-plane non dimensional slenderness calculated for the beam or rafter considered as <u>hinged at its ends</u>

Conditions for formula aplicability(3):

For multi-storey frames, the second order effects may be calculated by means of the approximative formula provided that all storey have a similar:

- Distribution of vertical load
- Distribution of horizontal load
- Distribution of frame stiffness (frame members) with respect to applied storey shear forces

Irregular structures (with unequal distribution of frame stiffness) for which the formula is NOT applicable:

Application of the approximative formula on the multistory transverse frame:

1) Checking of the conditions of application for the approximating formula

2) Calculation of (α_{cr})

The transverse frame has a regular geometry and distribution of member stiffness:

Compression in the <u>beams</u> is NOT significant (very small values of axial force):

Beam Label	NEd (N)	Beam Span (L)	Beam Profile	Cross-section area [cm^2]	Gyration radius [cm]	Yield stress (fy) [daN/cm^2]	Lmd-bar	Lmd-crit
46	8004	6	IPE 360	72.7	14.96	2350	0.427	4.4
47	tension	6	IPE 361	72.7	14.96	2350	0.427	-
48	tension	6	IPE 362	72.7	14.96	2350	0.427	-
49	24092	6	IPE 363	72.7	14.96	2350	0.427	2.5
50	7788	6	IPE 364	72.7	14.96	2350	0.427	4.4
51	tension	6	IPE 365	72.7	14.96	2350	0.427	-
52	13805	6	IPE 366	72.7	14.96	2350	0.427	3.3
53	4162	6	IPE 367	72.7	14.96	2350	0.427	6.1
54	tension	6	IPE 368	72.7	14.96	2350	0.427	-
55	25258	6	IPE 369	72.7	14.96	2350	0.427	2.5
56	15904	6	IPE 370	72.7	14.96	2350	0.427	3.1
57	13934	6	IPE 371	72.7	14.96	2350	0.427	3.3

Since conditions for approximate calculation of (α_{cr}) are fulfilled, use of the formula is allowed:

$$\alpha_{cr} = \left(\frac{H_{Ed}}{V_{Ed}}\right) \cdot \left(\frac{h}{\delta_{H,Ed}}\right)$$

The calculation is performed in a table (EXCEL) for each storey of the steel frame.

Calculation in a table of a distinct value of (α_{cr}) for <u>each storey</u>. The <u>minimum value</u> on all storey is the analysis result

Storey number	Vertical force per level-V1 [N]	Horizontal force per level-H1 [N]	V _{Ed} [N]	H _{Ed} [N]	Level lateral displacement [m]	Delta-relative [m]	H-level [h]	Alpha-crit
1	900000	35385	3600000	141540	0.0247	0.0247	4	6.37
2	900000	35385	2700000	106155	0.046	0.0213	4	7.38
3	900000	35385	1800000	70770	0.0663	0.0203	4	7.75
4	900000	35385	900000	35385	0.0732	0.0069	4	22.79

The following data was used to find the V1 and H1 values of the table:

Uniformly distributed load (to calculate V1 value in table):

Equivalent horizontal forces for global sway imperfection (to calculate H1):

Lateral wind pressure -horizontal distributed load (to calculate H1) :

Calculation of the forces per each level in the table (using input data in SAP):

Vertical force per each level:

V1 = 50000N/m x 3 span x 6,0 m = 900000 N

Horizontal force per each level:

Finding the result of the calculation procedure from the table:

$$\alpha_{cr} = \min\{6,37; 7,38; 7,75; 22,79\} = 6,37$$

Computer calculation of (α_{cr}) considering imperfections and second order effects:

The elastic buckling analysis is performed with SAP 2000 Nonlinear computer code, to find (α_{cr}) value

- Type of analysis: plane frame (i.e. analyzed transversal frame);
- Loads: vertical uniformly distributed+ horizontal equivalent loads to global sway imperfection;
- Result: α_{cr} =5,00 (Sway/flexible frame)

Comparison between results obtained by the two methods:

• Approximative formula: $\alpha_{cr} = 6,37 < 10,0$

 Elastic buckling analysis using SAP computer code: α_{cr} = 5,0 < 10.0

 CONCLUSION: By both methods the <u>transversal</u> plane frame is a sway (flexible) frame

Since α_{cr} > 3,0 the structure has a moderate sensitivity to deformed geometry

CONSEQUENTLY: A first order elastic analysis is allowed for the structure where <u>all the horizontal</u> <u>lods</u> (equivalent horizontal forces of global sway imperfections and wind forces) will be multiplied with the following factor:

$$\mu = \frac{1}{1 - \frac{1}{\alpha_{cr}}} = \frac{1}{1 - \frac{1}{5,0}} = 1,25$$

OBSERVATION: Multiplying the <u>horizontal</u> <u>loads</u> with μ =1,25>1,0 will result into an <u>amplification of internal forces</u> obtained from the <u>elastic first order structural analysis</u> (M,T, N) thus taking into account structure increased sensitivity to deformed geometry.

The <u>new values</u> for horizontal loads are:

a) Equivalent horizontal forces for global sway imperfection: F_{x1}=1,25 x 2385 N
 =2981 N

b) Wind distributed loads: w1=5250 N/m
 x1,25 = 6563 N/m and w2=3000 N/m x
 1,25 = 3750 N/m

New equivalent horizontal forces to global sway imperfection of the frame:

New wind load in SAP (elastic first order analysis!)

PART 2: Longitudinal frame

⇒To apply approximative formula for (α_{cr}) calculation, <u>the same conditions</u> as before should be <u>checked</u> for the <u>longitudinal frame</u>, also operating with the gyration radius about <u>minimum inertia axis</u>

(plus profiles labels and sections accordingly!)

Application of approximative formula will be skipped and only computer analysis will be furtheron used:

Longitudinal frame: profiles and geometry:

Labels of the columns for longitudinal frame (used to find the new values of axial forces)

Calculation of (Φ) : global initial sway imperfection for the longitudinal frame

$$\Phi = \Phi_0 \cdot \alpha_h \cdot \alpha_m$$

Where:

$$\Phi_0 = \frac{1}{200}$$

 α_{h} = reduction factor for height (h) applicable to columns; α_{m} = reduction factor for the number of columns in a row;

Calculation of factor (α_h)

Height of the structure = 4 storey x 4,0 m = 16,0 m

$$\Rightarrow \alpha_h = \frac{2}{\sqrt{h}} = \frac{2}{\sqrt{16}} = 0,5$$

Code supplementary condition:

$$\frac{2}{3} \le \alpha_h \le 1,0$$

Result: $\alpha_{h} = 2/3=0,667$

Calculation of factor (α_m):

$$\alpha_m = \sqrt{0,5\left(1+\frac{1}{m}\right)}$$

Where m=4 =number of columns in a row (in our case)

$$\alpha_m = \sqrt{0.5\left(1 + \frac{1}{5}\right)} = 0.775$$

Calculation of global initial sway imperfection (Φ)

$$\Phi = \frac{1}{200} \cdot 0,667 \cdot 0,775 = 0,00258 \, radians$$

OBSERVATION: The result is a rotation angle measured in radians. This value is <u>not simple</u> to implement in static calculation of structures. Therefore equivalent horizontal forces (F_x) are used

Equivalent horizontal forces shall be applied at each level to produce the same sway (they replace rotation Φ)

$$F_x = V \cdot \Phi$$

V = sum of vertical force at each storey = 4 span x 5,0m x 59400 N/m = 1188000 N

$$\Rightarrow F_x = 0,00258 \cdot 1188000 = 3065 N$$

Longitudinal frame loading for elastic critical buckling analysis:

The elastic buckling analysis is performed with SAP 2000 Nonlinear computer code, to find (α_{cr}) value

- Type of analysis: plane frame (i.e. analyzed longitudinal frame);
- Loads: vertical uniformly distributed + horizontal equivalent loads to global sway imperfection;
- Result: $\alpha_{cr}=2,28 < 3,0$ (Sway/flexible frame)

CONCLUSION:

1) The <u>longitudinal frame</u> is a flexible (sway) structure;

2)The (usual) elastic first order analysis is NOT CORRECT on this frame since the frame is <u>sensitive to deformed geometry;</u>

3) ONLY second order analysis performed by a suitable computer code is <u>correct</u> for this frame

PART 3: Bracing systems. Rigid (non-sway) frames

- Bracing systems provide <u>deformability</u> <u>control</u> on structures;
- Most of the bracing systems are based on the principle of the triangle;
- The triangle is an un-deformable geometric figure used to control structural deflection

Under horizontal loading Fx, which otherwise induce <u>deformations</u>, bracing systems resist sway and transmit the load to foundations:

Other usual systems of bracing:

Any type of bracing system is considered efficient if, when applied to a sway frame, it reduces the maximum drift value (Δ) with 80% (i.e. 5 times)

Effect of an X-bracing system on the transverse frame of the application:

Horizontal and vertical loading of transverse frame for elastic buckling analysis:

Efficiency of the bracing system:

- Horizontal deflection (drift) at the top of the frame without bracing (from SAP analysis):
 Δ₁=0,0732 m = 7,32 cm
- Horizontal deflection (drift) at the top of the frame using the bracing system (from SAP analysis): $\Delta_2=0,0088 \text{ m} = 0,88 \text{ cm}$
- Ratio between the two drift values:

$$\frac{\Delta_2}{\Delta_1} = \frac{0.88}{7.32} = 0.12 < \frac{1}{5} = 0.20$$

Bracing system OK !

The elastic buckling analysis is performed with SAP 2000 Nonlinear computer code, to find (α_{cr}) value

- Type of analysis: plane frame (i.e. analyzed braced transverse frame);
- Loads: vertical uniformly distributed + horizontal equivalent loads to global sway imperfection;
- Result: $\alpha_{cr} = 7,81 < 10$ (Sway/flexible frame)

Since α_{cr} > 3,0 the structure has a moderate sensitivity to deformed geometry

CONSEQUENTLY: A first order elastic analysis is allowed for the structure where <u>all the horizontal</u> <u>lods</u> (equivalent horizontal forces to global sway imperfections and wind forces) will be multiplied with the following factor:

$$\mu = \frac{1}{1 - \frac{1}{\alpha_{cr}}} = \frac{1}{1 - \frac{1}{7,81}} = 1,147$$

OBSERVATION:

By introducing a bracing system into the frame, the value of (α_{cr}) has increased, showing less sensitivity to deformed geometry

$$\alpha_{cr}^{brace} = 7,81 > \alpha_{cr}^{sway} = 5,0$$

Effect of an X-bracing system on the longitudinal frame of the application:

Horizontal and vertical loading of transverse frame for SAP elastic buckling analysis:

The elastic buckling analysis is performed with SAP 2000 Nonlinear computer code, to find (α_{cr}) value

- Type of analysis: plane frame (i.e. analyzed braced longitudinal frame);
- Loads: vertical uniformly distributed + horizontal equivalent loads to global sway imperfection;
- Result: $\alpha_{cr}=6,71 < 10$ (Sway/flexible frame)

Since α_{cr} > 3,0 the structure has a moderate sensitivity to deformed geometry

CONSEQUENTLY: A first order elastic analysis is allowed for the structure where <u>all the horizontal</u> <u>lods</u> (equivalent horizontal forces to global sway imperfections and wind forces) will be multiplied with the following factor:

$$\mu = \frac{1}{1 - \frac{1}{\alpha_{cr}}} = \frac{1}{1 - \frac{1}{6,71}} = 1,175$$

OBSERVATION: By introducing a bracing system into the frame, the value of (α_{cr}) has increased, showing less sensitivity to deformed geometry

$$\alpha_{cr}^{brace} = 6,71 > \alpha_{cr}^{sway} = 2,82$$

In this particular case the frame has changed category from <u>highly sensitive to deformed</u> geometry (requiring a second order analysis) to moderate sensitive, allowing for an elastic first order analysis via horizontal load multiplication with factor μ =1,175