8. COLUMNS

COLUMN = ELEMENT SUBJECTED TO:
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8. COLUMNS

RECTANGULAR SECTION
I..- e A
Eccentric = J - | Compression with
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8. COLUMNS

DESIGN SITUATIONS

PERSISTENT SEISMIC

r N W

Pivot C

¥ Niim
/ Pivot B
e MW

Nilim

Ductility class DCH: [Ng; <0,40A foq <Ny | [Ngy <0,45A f o4 < Nji-
Ductility class DCM: | Ngg <0,55A f g = Ny | | Ngg < 0,50A f oy = Nji

Ductility class DCL: only in areas with a, < 0,10g

P100-1/2006 P100-1/2013




8. COLUMNS

COLUMNS + GIRDERS = FRAME

l

SENSITIVE TO LATERAL DISPLACEMENT

l

HIGH VALUES OF THE BENDING MOMENTS
IN COLUMNS AND GIRDERSS



8. COLUMNS

BRACING SYSTEMS ARE USED IN ORDER TO
REDUCE THE LATERAL DISPLACEMENT

Reinforced
~ concrete wall

AS A RESULT OF THE ABOVE:
* BRACED COLUMNS
* UN-BRACED COLUMNS



8. COLUMNS

THE ENDS OF THE COLUMNS CAN HAVE DIFFERENT TYPES OF
CONNECTIONS WITH NEIGHBORING ELEMENTS:

e RESTRAINED DISPLACEMENTS & ROTATIONS (AS FOUNDATIONS)

 PARTIALLY FREE DISPLACEMENTS & ROTATIONS DEPENDING ON:

- stiffness of neighboring elements
- with or without bracings

e FREE DISPLACEMENTS & ROTATIONS



8. COLUMNS

DEFINITIONS

First order effects - M,: action effects calculated without
consideration of the effect of structural deformations, but including
geometric imperfections

Second order effects - DM: additional action effects caused by
structural deformations

Second order moment - Mg, = hM, (n > 1,0) : bending
moment, taking into account the influence of structural
deformations



8. COLUMNS

The second order effects are produced by two types of deformations:

|

Lateral deformations of the story:

- depends on the structural stiffness,
- characteristic for unbraced structures

Individual deformations of the element:

- depends on slenderness &
neighboring elements

- characteristic for braced structures

- may cause buckling




8. COLUMNS

Buckling: failure due to instability of a member or structure
under perfectly axial compression and without transverse load

Buckling load: the load at which buckling occurs; for isolated
elastic members it is synonymous with the Euler load

Effective length: a length used to account for the shape of the
deflection curve; it can also be defined as buckling length.

Isolated members: members that are isolated, or members in a
structure that for design purposes may be treated as being isolated



8. COLUMNS

8.1. GEOMETRIC IMPERFECTIONS
8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE
8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

8.4. BIAXIAL BENDING OF COLUMNS WITH RECTANGULAR
CROSS SECTION

8.5. CIRCULAR/RING-SHAPED COLUMNS

8.6. DETAILING OF COLUMNS



8.1. GEOMETRIC IMPERFECTIONS

The unfavorable effects of possible deviations shall be taken
into account in the analysis of members and structures.

Deviations:

- cross section dimensions
- geometry of the structure
- position of loads

Deviations in cross section dimensions:

- are normally taken into account in the material safety factors

- these should not be included in structural analysis

- for cross section design it is necessary to assume the minimum
eccentricity, e, = h/30 but not less than 20 mm where h is the depth
of the section ?




8.1. GEOMETRIC IMPERFECTIONS

Deviations in the geometry of the structure:

 shall be taken into account in ultimate limit states in:
- persistent design situations
- accidental design situations

* need not be considered for serviceability limit states



8.1. GEOMETRIC IMPERFECTIONS

IMPERFECTIONS MAY BE REPRESENTED BY AN INCLINATION
0; =0goho,

00 =2/200 - basic value

an is the reduction factor for length or height: an=20f1; 213< e <1
am 1S the reduction factor for number of members: O = ﬁu-"ﬂ,ﬁﬁ +1/m)

I is the length or height [m], see (4)
m is the number of vertical members contributing to the total effect

13



8.1. GEOMETRIC IMPERFECTIONS

UNBRACED STRUCTURE
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8.1. GEOMETRIC IMPERFECTIONS

BRACED STRUCTURE

E}i}i
ACTION ON FLOOR Hy—
6y/2"

H: =6; (XN, +ZN,)/2
Ny



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.2.1. TOPIC OF SECOND ORDER EFFECTS

First order effects - M,: action effects calculated without consideration of
the effect of structural deformations, but including geometric imperfections

Second order effects - DM: additional action effects caused by
structural deformations

Second order moment - M, = hM,, (h > 1,0) : bending moment,
taking into account the influence of structural deformations

F
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8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

ELEMENT SENSITIVITY TO SECOND ORDER EFFECTS DEPENDS ON SLENDERNESS RATIO

r=10

I
14 o - effective length

i —radius of gyration
THERE ARE 3 CASES OF COLUMN FAILURE DEPENDING ON SLENDERNESS RATIO

5
N | =N
) .
— Cantilevered column
Longitudinal force increases from zero till column failure

Myeq = Ne




8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

N a AM . Slender columns 35<| £ 120
] \ * important second order effects
Npg * bending moment increases faster than
longitudinal force — curve b

e element failure is produced by
exhaustion of be%ring caBacity toa
force equal to Npg < N

. NB - is the buckling force

Nz4
5 / b
Ng, L/
G

Very slender columns | > 120

* buckling occurs at the force N%
Short columns | £ 35 » deformations increase indefinitely
 negligible second order effects under constant force
e bending moment is proportional to the  in this case bearing capacity N(FJQd — N%
longitudinal force — line a
e element failure is produced by
exhaustion of bearing capacity to a
force equal to NZj4



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

2
NB:TCZEI

- Euler formula for buckling load of isolated columns
I
0

(1707 — 1783) :

PINNED

19



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

N = n°El
15
Euler formula does not correctly describe the correlation between
bearing capacity and element slenderness

N 4ono arder effdcts
<

may ke ignored , Euler curve EC2 defines | ,
1"'*.‘ / lim
\/ Real correlation
b
I /
Nr4 = const! . a: b; c - according to slide 17

a | | b c
35 120

Column:
short slender very slender
Column failure:
ultimate limit state buckling




8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.2.2. SLENDERNESS AND EFFECTIVE LENGTH OF
ISOLATED MEMBERS
Lo G—i b

Cﬂ’.’:ﬂ‘ CWZ‘ CE":E!‘
Lo=L Ly=24 Lo=07TL £y=05( Lo=4 050<fy<l £y>2L
a) b) c) d) €) ) 2)

a) double pined column in braced structures; not suitable in seismic areas
b) column in one level unbraced precast structure
c) column in one level braced precast structure

d) double fixed column in braced structure; bottom end = foundation !;
top end = very stiff girder ?

e) case d in braced structure

f) column in braced structure; node rotation is possible

g) foundation rotation of case b
21



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

considered column

T

oy

Braced structure:
- no lateral deformations
- node rotations

inflection point
= \
| T
| — % = i
| g | v !
} = | & ||
ey Ly I S
I “ |
! | I L ¢
= I £ I
| —— =
S !.
Double pinned Double fix Real
column column column
\ J

Extreme situations

22



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

considered column
N

1\

N

.

1

-this is a sway structure

OR

- this structure sways

Unbraced structure:
- lateral deformations
- node rotations

inflection point

.|_|

=)

fo

Double fix column & free
lateral deformations

| bn=f

Real
column



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

d col lo= | 14 k [ 1+ o J
Braced columns D45 " H'| [145 " k:

I Y 4 Y |
Unbraced columns [,= [ ma:::J ||1 +10- k‘—k 1 ¥ -E--— 1 [ 14 i?- J |
|\ TN i T 1+k, ) |

ki, k2 are the relative flexibilities of rotational restraints at ends 1 and 2 respectively:

K : (87 M) {':EI'H / b , Static analysis
@ s the rotation of restraining members for bending moment M, <— s required

E/7 is the bending stiffness of compression member,
/ Is the clear height of compression member between end restraints

Regular frames

Alternative procedure for k in case of braced frame

(El/@)c c — considered column
- 2(El/¢ = 0’1 b — adjacent girders at the top & bottom column ends
> 2(El/¢),

24



PRELIMINARY ASSESSMENT: 5 =[3-/

8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

| @ cantilevered
Top Bottom end condition column
end g
B 1 2 3
condition e ———
Braced frames h.x @ simple supported
1 0,75 0.80 0,90 —>
2 0.80 0.85 0.95 ol ' B
3 0.90 0.95 1.00 h 7 @ <bz | b2
Unbraced frames a.l L
1 1.2 1.3 1.6 O hi2ha |
- i3 15 1.8 hs
3 1.6 1.8 - = bl
4 23 : g D hp12 ha
: l
Fixed

1 - fixed to foundation; monolithically connected to a beam h, > h_
2 — connected to a slab; monolithically connected to a beam h, < h,
3 - connected to simple supported beam

4 — unrestrained




8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

For members with varying normal force and/or cross section

(o ="\El rer /Ng

El __—representative stiffness

repr

Ng — buckling load calculated by appropriate
software or numerical methods

26



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.2.2. CREEP INFLUENCE

1°T order bending moment:

Nl _’[‘]
= ’ PJN Mogd = Ngg€

2"d order bending moment
without creep influence:

Mgg=Mopgq + Nggo

—— | 2"d order bending moment with
B |‘_ creep influence:

= e+ d+ 9
Mede =Mogg + Negg(1+0)3

M OEdgp

The duration of loads may be taken into account by: ¢4 = (p(OO,tO)

M OEd
M OEdqp - calculated for section with maximum bending moment
— | or

M OEd d representative mean value



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.2.3. SIMPLIFIED CRITERIA FOR SECOND
ORDER EFFECTS

Second order effects may be ignored if they are less than 10 %
of the corresponding first order effects

8.2.3.1. Slenderness criterion for isolated members

Second order effects may be ignored if A <A,

7\*Iim — ZOABC/\/H



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

A =1/(1+0,20) (if @ Is not known, A = 0,7 may be used)

o
I
q
-2

e

(if wis not known, B = 1,1 may be used)

C =17 -Fm (if rm 1s not known, C = 0,7 may be used)
w.s effective creep ratio; _ _

@ = Afal (Aclea); mechanlﬂal remf::r::ement ratio;

A. is the total area of longitudinal reinforcement

n = Neqa/! (Acf); relative normal force

m = My/Mgpz; moment ratio

Mo: Mo. are the first order end moments, | Moz | = | Mo |

&1 &r
U4

o <0

Im

29



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

| ., based on accepted simplifications for coefficients A, B & C

Column: | Unbraced Braced
i
Transverse K lg:’|7
force
Bending & E Z
moment 7 wf =)
diagram My & Mg |:| Mg
Z predominant effect
=) of geometric = q X
imperfections Mor = Mo IMp1|= Mgz
C 0.7 1.7 2.7
I 10,78/ +/n 2620/+n | 41,60/+/n




8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.2.3.2. Global second order effects in buildings

Global second order effects in buildings may be ignored if

F < _ ”5 i Z E::d "'r-:
VEd = ™
n+1,6 I
Fv/eq is the total vertical load (on braced and bracing members)
Ns is the number of storeys
' is the total height of building above level of moment restraint
E.¢s Is the design value of the modulus of elasticity of concrete, see 5.8.6 (3)
I is the second moment of area (uncracked concrete section) of bracing member(s)
k, =0,31

k, =0,62 if it can be verified that bracing members are uncracked in ultimate limit state

31



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Previous expression is valid only if all the following conditions are met:

- torsional instability is not governing, i.e. structure is reasonably symmetrical

- global shear deformations are negligible (as in a bracing system mainly
consisting of shear walls without large openings)

YES NO NO
- bracing members are rigidly fixed at the base, i.e. rotations are negligible
- the stiffness of bracing members is reasonably constant along the height

- the total vertical load increases by approximately the same amount per storey



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.2.4. Methods of analysis

General method based on nonlinear analysis
EC2-5.8.6

Method based on nominal curvature
Method based on nominal stiffness

Last two methods are simplified solutions.

There is the possibility of the second order static analysis (nonlinear
static analysis) based on nominal stiffness. Efforts resulting from this
calculation include second order effects.



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.2.4.1. Method based on nominal curvature

Method is suitable for isolated columns with constant N, and defined |,

NE"‘l\MDEd

N\

sine-shaped

|
|
|
|
e |

curvature AR
|
|
|
|
|

max M, = Ng4e,
sine-shaped moment M,
distribution

distribution

MpEp: M
Nz\jj OEd

Second order effects depends on element deformed shape

Maximum deflection e, depends on curvature 1/r in the moment of failure

1/r depends on N, & creep



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

CURVATURE

For members with constant symmetrical
cross sections, including reinforcement:

]/r:KrK(p']/rO

K. — correction factor for axial load

K(P — correction factor for creep Mz

]/ro maximum curvature corresponds to / g
balance situation (maximum bending
moment)

Cyd

lo d ~ Xjim



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Correction factor K,

Higher N, smaller curvature 1/r

Ny —Npa Ny —Ngg

Uro \ N]/r
r=1ry—4—FEd : Af
]7/ ]/ONu_NbaI c'cd
o NEd correvction
Acfcd
n,=1+o
_As,totfyd
Acfcd
N, —nN
K, =—F <10

Ny —Npgl

M

curvature

.
My

lf'rl'{}

ME4
1/r

Ny :As,totfyd "'Acfcd <
Nbal = E”mbdfcd ~ O,4bdfcd(_)

/!

Chp. 6



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Correction factor KJ-

Ko =1+Bog >10

B =035+ /200—2/150

14
A =_—O <« slide 14
|

M
) OEdap < slide 24

Qe = 0(o,tg
M oEgd



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

BENDING MOMENTS

c - factor depending on the curvature distribution; for constant cross section:
n? ~ 10 — for sine-shaped distribution of curvature
8 — for constant curvature distribution (constant bending moment)

1/r — curvature <« slide 32

|, — effective length <« slides 18 ... 23

The meaning of relation (*) is the summation
of M4 diagram with M, diagram.

The resulting diagram allows for the maximum
bending moment.



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

15t order bending moment — linear diagram; maximum value at the column ends

2" order bending moment — sine-shaped diagram between inflexion points

Unbraced column

Braced column

/ Inflexion point

M o4 R ."/Ml:]Ed/NIE

algebraic summation arithmetic summation

39



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Braced columns

Different first order end moments M,; and Mg, may be
replaced by an equivalent first order end moment M,

My, M,
/ 0.4/
/ M,,—— M,
N ™, -M,,

M Oe — O,6M 02 + O,4M 01 > O,4M 02

M,, and M, should have the same sign if they give tension on
the same side, otherwise opposite signs.
Furthermore, M02| > | M01| :




8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Maximum 1t order bending moments occur at the element ends
The maximum 2" order bending moment occurs at about mid-length of column

Therefore it is possible that the maximum bending moment is no longer at
the element ends

M, M,
Mo . M, +M,
& (& ) =
M,, 0588 - My +0.5M,

In such cases, the design bending moment is defined by:

M gq = max(M gp;Mge + M ;Mg +05M )



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Unbraced columns

Lateral displacements may be generated by:
- asymmetry of the structure;
- horizontal seismic or wind forces.

All columns have the same mode of deformation due to high
stiffness of reinforced concrete floors.

Therefore, it is reasonable to use an average curvature, even though
the columns may have different rigidities.

Maximum 2" bending moment occurs at that end of the column
which has the highest stiffness.



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Addition of 2" bending moment to 1%t bending moment

For the same rigidity at the both ends of column addition is done to the maximum
15t bending moment

For different rigidities of column ends the addition is done as follows:

- to the maximum 1%t bending moment (which corresponds to highest rigidity)

- at the opposite end, the additional bending moment may be reduced in
proportion to the ratio of the rigidities at the two ends of the column

_ @) i | My M, IVIEd,b = 1\'{[01 i ME (kb/ka )

K<k,

@ Mo slide 35>M, Mg, =Mg +M,



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.2.4.2. Method based on nominal stiffness

In a second order analysis based on stiffness, nominal values of the
flexural stiffness should be used, taking into account the effects of
e cracking,
 material non-linearity
° creep
on the overall behavior.

This also applies to adjacent members involved in the analysis:.
e beams
e slabs.

Where relevant, soil-structure interaction should be taken into account.

The resulting design moment is used for the design of cross
sections to bending moment and axial force



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

NOMINAL STIFFNESS
El = K Egyl o + KEql
E.4 - Design value of the modulus of elasticity of concrete
Ecg =Ecm/Yee V=12
|. - moment of inertia of concrete cross section

E. - design value of the modulus of elasticity of reinforcement

|, - second moment of area of reinforcement, about the
centroid of area of the concrete

K, =1 - factor for contribution of reinforcement

K. - factor for effects of cracking, creep, etc.



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Ko =kKo/(A+ g ) if p>0,002
D= As/Ac - reinforcing ratio

A, - total area of reinforcement
A_ - area of concrete section

Qg - effective creep ratio — slide 24
kl = \/fck/zo

Ko = nL < 0,20 with A - slenderness ratio
170

ko, =n-03<0,20 if Ais not defined

n= NEd/Acfcd



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

In statically indeterminate structures, unfavorable effects of cracking in
adjacent members should be taken into account.

Expressions from slides 45 & 46 are not generally applicable to such
members. Partial cracking and tension stiffening may be taken into account
according chp. 16.3. Simplified approach of deflection control

However, as a simplification, fully cracked sections may be assumed.

The stiffness should be based on an effective concrete modulus:

Ecder = Eca/L+ )

Note: Meaning of the text Fully cracked section is presented in chp. 16.3



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

MOMENT MAGNIFICATION FACTOR

The total design bending moment Mg, including second order
effects, may be obtained by increasing M4 as follows:

B } o
M ey = M oeq| 1+ o (*%)
= OE{ (Ng/Ngg)-1

Ng4 — design value of axial force

Ng — buckling load based on nominal stiffness

B — factor depending on distribution of 15t and 2"¢ order moments

B = m?/c, — for sine-shaped distribution of 2"¥ order moments of isolated columns

¢, — factor depending on distribution of 15 order moment:
C, = 8 for a constant bending moment
c, = 9,6 for a parabolic distribution
Co = 12 for symmetric triangular distribution



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Where provision for 3 or ¢, are not applicable, § =1 is a reasonable simplification.

Consequently, relation (**) turns into:

M
Megq = OEd =NM g4
1- Ngg/Ng

B 1
1-Ngg/Ng

n



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Braced columns

For members without transverse load, different first order end moments My, and M,
may be replaced by an equivalent constant first order moment M, (see slide 37).

;=8

Depending on slenderness and axial force, the end bending moments can be
greater than the magnified equivalent moment nM,,
+M,,

L 0,44
7 Ldnﬂ / E v
/ ‘2\111\{06

+M 01 - _\”fm

Therefore relation (**) from slide 45 is rewritten as follows:

2

I
NB/NEd)—J

Meq=Mao| 1+
Ed Oe|: 8(



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Unbraced columns

The same |, for all columns because they “work” together due
to monolithic floor

M OEdgp

Slide 27: @ = @(0,tg) v
OEd

Discussion on M, used for @ : no horizontal variable loads (e.g. wind,
bridge crane) are taken into account because do not induce creep



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

8.3.1. Balance situation

X 39
Chp. 6.5 —slide 17 = ’
P- SR 1000f 4 /E,
12— A0T A e fa  F, B
se.0e > Eug T — — Fo= Aol
_T_ : ) ) 0,8Xym —— = G,Sb}il{mf:d
i - v .
h d G' L Nl@ E | d—d
———....?._......1.. ................. T II""IR‘_ILU:L Tm = d-0 4}‘;1131
/ 0.5h—d;
% B ? *E? A / L —Hy Fa=Aafy
e = = TR
b
2F=0
Nim=F+FR,-Fy4
|\Ilim _ F 08bXllm cd OSE.'Ilmbdf



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

Jldz I

An=Asn gy

B e —
1 ; gl 0,8%iim
d lim
! 4
h| d Gi ..... Niim o i
...... S A v
/ 0,5h—d;
=L O b Py

ftd
EEL Fao=Anfy
— F-c i D:befcd
F.
d—d;
Zim = d - 0,4Xim
Fs1= Aslf}'d

€51 = Eya = Lya/Es

2.M = 0 - related to the A, axis

Mg fim + N (‘lf'h = d]] = F.Zjym + Fo> (d— dz:’
Mg jim + N i (0,50 —d; ) = 0,8bx 3, £ (d— 0,4% 4, )+ B (d—d, )

Mg pim + N (‘lﬂl =ik ] =088, (1 —04&,, ]bd:f-:d +E; (‘j —d, :’

s

Mg jim = WipmPd T g + Ay f}-d(‘j ~d,)-Ny, (0,50 -d,)

53



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

TWO WAYS OF FAILURE

Ny <N, = - compressive force with prevailing bending
- ductile failure due to yield of
tensioned reinforcement
- compulsory in case of seismic areas

Ney > N, = - bending with prevailing compression
- brittle failure by crushing of concrete
without yielding of reinforcement A_,
(whether it is tensioned or compressed)
- brittle character becomes stronger with the
increasing of the compressive force



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

8.3.2. Section analysis

i e ] QT
G:.Sh_d: : + F:

0,5h-d; s
) |
Td] Fs1=Asfia

Stress diagram corresponds to
yielding of A, and A,

55



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

TENSION REINFORCEMENT YIELDING BEFORE

CONCRETE CRUSHING
XE Xlim

STRESS IN COMPRESSION REINFORCEMENT
There is yielding of compression reinforcement if ¢, > ¢ 4

_ >
fs2 =T T 2 By X\x
V4

Steel PC52 PC60 5400 $500
X, 1,69d, 1,91d, 1,984, 2,64d,
STAS 10107/0-97 2,0d,

X=X, Og,=fy

X<X, Og5<fy
* no yielding of compression reinforcement
e procedure in the chapter 6.4 (slide 12) applies

* simplified approach: F_is acting at the level of F,,



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

ZF - O feq Fo=Aaofa
_ D:E};I b ‘
F.
2 aa _ .
Ngg=F +Fy-Fy e T "
-_.M T =z=d=q4x
Ed
(1) cooveeee. Ngg = F, |
F31=Ai1f:-ﬂ
Z
e hEﬂ Let’s assume yielding

© 0,8bf

Casel: E=x/d <&, thesameas N <N, . —A,yields
Casell: E=x/d>E;,, thesameas N >N, — A, doesnotyield



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

Case I: compression with prevailing bending - A, yields
(eccentric compression with large eccentricity)
X3 x,® A yields fua

Fo= As f};d

b

0.8x I

2.M = 0 - related to the A, axis

EN
Mg, + N5 (0,5h—d,)=F.z+F,(d-d, Neg T d-
Ed Ed( 1) ( h) -_.Eg__ D
slide 57: using relationship (1)

|

Mg, + Ngg(0,5h —d; ) = Ng, (d —0,4%)+ E, (d—d,) Fom A,
Mgy = Ngg (_d . 0,4}()— N4 (D:Sh —d, )+ F, (d —d, )
with d = h — d;
Mg; = Ngy(h—d; —0,4x —0,5h +d, )+FE,,(d —d,)
(2) . Mgy = N4 (0,5h—0,4x)+A,f 4(d—d,)

Y,

resisting bending moment

Mgy =Ng4(0,5h—04x )+ A f (d—d,)



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

x<x,® A, does not yield

simplified approach: F_is located at the level of A,

2.M = 0 - related to the A,, axis: it py= Anfy
0,8x I g

MEd _NEd(Dlsh_dE):Fsl(d_dE) _-NEd—G a
(3) ... Mgg=Afy (d-d; )+ N, (0.5h-d,) TS [ z=d-04x

&/

resisting bending moment

F:=Auafa

Mgq = Ayf,q(d—d,)+ Nz, (05h—d,)



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

Case II: bending with prevailing compression - A , does not yield
(eccentric compression with low eccentricity)

X > Xim >> X, ® A, yields

Procedure described in cpt. 6.4 (slides 12, 13) should be
applied using - €. & o.- ¢, diagrams

In what follows, relationships between the stress in
reinforcement A_, and neutral axis position are used
without the need for stress-strain diagram.



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

Xim <X<d
|d: Asr = Asi
ll=d
> _f Es1 Fs1 = As10s
!dli b (_BALANS
F:1 — tension

From triangles (red & black lines):

Syvd € X d—X

Ecu = Xlim Y = xS o gy =—1m
v _ d—x,

d X||m d-x X lim

R A%
o n il -
o, ,=— f o (tension)
X AT

‘C’yd
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8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

X >d
frlamis __ Be = T
T >N
_ M E. |
Y e e R ‘ng T AR
|t [ 0 e § =
T—!':h b : Fa1=— AaOs

Fsy — compression

It is accepted that o, is directly proportional to neutral axis depth

x—d

6., =4

sl

f 4 (compression)
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8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

In view of the above, the stress in reinforcement A_, is
defined by the relationship:

6 =f(X)-fq
Xjim(d = %)/x(d = Xjim) ~ for X} <x <0
f(x):<—4(x—d)/d for d<x<h
—-10 for x>h

NOTE:
Minus stands for compression



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

2F=0 ke Fo o ey
i T
Ngq =F +F;; — K i 3 i oR . =
—x = \"‘-E | X
= M i i :
NEd = Dﬁgbxfcd +A52f§=d o ifi‘!LE.l'.:L"-sl S| Emd=0R x |
NEd — O,befcd —|_ ﬂsz (fﬁ-'-d = GE]. ) !:51 - -*"'J-s]'-rjil. FH - !\'P]GJ:

Nygq = 0,8bxf,q + A f,,[1—F(x))

2.M = 0 - related to the A, axis:
Mgy =08bx(d - 0,4x)f, + A,f,(d—d,)—Ng(05h—d,)
\

J

resisting bending moment
Mgy =0,8bx(d —0,4x )y + A, f,4(d—d,)—N4(0,5h—d,)
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8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

8.3.3. Reinforcement design

Input data Output data
Megs Negs 05 0 s £l Coom A, = A,,; x; and eventually o,
N
x=—uod <k d-Casel
0,8bf_4
X2X, X <X,
From relationship (2) — slide 58: From relationship (3) slide 59:
KiEk, _ Mg, -N:ﬂllﬂ 5h-04x) Ay e Mgy —Ngy(0,5h - d, )
N
x=—=sd_sE._ d- Casell
08bf4
Solve the system of equations to have A = Ao
2F=0
IM=0
The system of equations 1s solved step by step, choosing X, because it is a
non-linear system.
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8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

Approximate evaluation of reinforcement regardless of compression case (d,/d=01)
ASI =Aﬂ =A5__[I}[{(E “Fi.th A =E!}mt bh fcﬂ/{{f}'ﬂ

g tot
where:
@y =(1—0,55vv, )/AB if 0>v=—-085:
W = AR + v, if —0.85>v;

v=Ng, /bhf ; (negativ for compression);
v, =—0,85—v
k=050-d. /h;

P

a

1.0

0.5 V
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8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

8.3.4. Cross section check
Input data Output data

Megi Negs 05 0 fogs f00 Ast = Al Coom | Miggs X; and eventually 6,

N 4
x=—24 <g. d-Casel
0,8bf. 4

X=X, X<X,

Mgy Mgy = N4 (th - 0:43.)*‘- Ag f}-‘d(d —d, ) Mgy <My = As1f;,-d(d —d, )+ Ngq (O,Sh —d, )

N
x=—2 5E. d- Casell
0,8bf_
Solve the system of equations to have Mgg
>F=0
M =0

The system of equations is solved step by step. choosing X, because it is a non-linear system.




8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

Simplified check for case Il of compression accepting M-N curve in the form of a line
where Ngg > N,

pN NCRd :bhfcd+(Asl+Asz)fyd
M Rd _ I\/IRIim
C . N C . N _
Rd Ed Rd [im
M <M I\IcF:Qd NEd M
Ed — Rd — C Rlim
NRd Nlim
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8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

8.3.5. Alternative calculation tools

http://www.library.upt.ro/index.html?cursuri — File: 10_STALPI.pdf

Anexa 10.1 Nomograme pentru calculul stalpilor cu sectiune dreptunghiulara

A

VEd VEd
[ A aemaa

v, My Bl o g
bhf _, bh“f., bhf f}.-ﬂ i "
Purposes of calculation — A=A Mra
1 Input data UEd & VE4 VEd & @
2 Output data (Dreq R4
3 Result Asl=An= ﬂjrathf:d-'.ﬂ'd Mrd = .uRdbh:f:d




8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

Anexa 10.2 Tabele pentru calculul stalpilor cu sectiune dreptunghiulara

ol [|As A Aa=Ac=A o R oAfw 4 _opnle
— bhf_, ) bhf _; )
b = As ot = 2A; £ e w
Purposes of calculation — Aa=Aa Mr4
1 Input data LEd & VE4 VEd & @
¥ Output data (Dreq LIRd
3 Result Aq = A = Dregbhfa/fig Mra = Urabhfea
v Values 1000 for Mg =
0 0.20 (Dezq 0] 0] 0.45 0.50
1,00 it i
: |
i I
VEd - - - reinforcement design - --- * (1000 g4
;
VEqd =---- -- Mga calculation -==--F------- > 1000 g4
0




8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

y

m MEady

Eha

Independent design in each principal direction, disregarding biaxial
bending, may be made as a first step.

Imperfections need to be taken into account only in the
direction where they will have the most unfavourable effect.



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

No further check is necessary if the slenderness ratios
satisfy the following condition:

%) I 05< xy/xz <2

and if the eccentricities e, and e, satisfy one the
following conditions:

h
15) I ey/ <02 or ez/bgo,z
e,/b e, /h

y

b, h are the width and depth of the section

Ay, Az are the slenderness ratios /o/i with respect to y- and z-axis respectively
Iy, - are the radii of gyration with respect to y- and z-axis respectively

ez = Medy / Neg; eccentricity along z-axis

ey = M4z | Neq; eccentricity along y-axis

Meqy is the design moment about y-axis, including second order moment
Me4: is the design moment about z-axis, including second order moment
Neq  is the design value of axial load in the respective load combination
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8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

1Y 1y
e 0.2b
| |'_! i
| | NEdl'nr: !
— & | 0
NEeg ]
E'I:" Ed|:|? _— Il;il
- ' «— .. | . cnSRi h
2 l g pers it |8 : ot o
z ]
9 ot
P £
P i
| | I' H ':
i I 1 l |
1 1—-—9-!1—1‘1 I
S | b
b [
Definition of eccentricities Graphical representation of
e and e the condition (4b)
y z

If the condition of Expression (4) is not fulfilled, biaxial
bending should be taken into account including the 2"
order effects in each direction



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

Procedure according to BS 8100, also accepted by IStructE

Y
S Meq, Column may be design for a single
4t axis bending but with an equivalent
r LA bending moment as follows:
'] ; - [ M
d - for: M eq, > __ Edy
£ UHg g d, ~ d, .
" ech
e | M, =Mgg, +By == r “Meq,
t le . | y
|
d, d,

d,
MeCh I\/IEdy_|_BNd IVIEdz

z

By =1- Ng,/bhf, >03
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8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

8.4.1. Basics of calculation

y 4 Ya e
. I

Reinforcement is distributed on all sides of the section



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

Force line is characterized by tgo = M Edz/M Edy = y/ez

Calculation is based on the assumptions from chp. 6.1

Position of the neutral axis is selected in such a way that internal
forces (namely F+2F,, and 2 F;) to be located on the line of forces

Failure is produced by:

- vyielding of the most tensioned bars followed by crushing of
compression concrete, according to pivot B;

- crushing of compression concrete without yielding of tension
bars, according to pivot C;

- whatever is the way of failure, there are bars which are not
yielding



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

INTERACTON SURFACE FOR COMPRESSION WITH BIAXIAL BENDING

- ) Static analysis: Ngy; Mey, 5 Mgy,
plan Ngq4 = const.

By vectorial summation results:

REd:\/Néd'l_Médy_l_MEdz :\/Néd_"Méd

Bearing capacity is:

R :\/Nsz+Médy+M2Rdz :\/NZRd+M2Rd

The two vectors are in the same
meridian plan P

The cross section resists to loads if point 2 (corresponding to the vector
Re4) is inside the interaction surface or overlapped on the point 1:

REd < RRd



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

8.4.2. Simplified procedure of calculation
Load Contour Method

Simplified procedure, taking into account the interaction of bending
moments My, and M, for a constant axial force Ngy, may be used for
calculation by hand

This method is suitable for structures located in seismic areas
because the bending moments increase under constant N
gravitational load.

plan N4 = const.
In this case, equation (5) becomes:
2 2 2 2
JNm+Mm§JNm+Mm

................................................. MEd SMRd M}-




8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

The simplified procedure is based on the replacement of actual curve of

interaction, dependent on angle o, with a simplified elliptic curve
M

Mradzo real

= _/diagona_l of

. Pl Calculation procedure is safe
= v because simplified curve is
v Mrdz fooooe. .

> - located inside the real one
- o

O Medz lz

S

= A~ g M4 .

0 '3;1 E | My

o 0 Mesy ~ Mriy  Mgrayo

Q

)

=

Mgq,0 — bearing capacity in uniaxial bending for Ny, when Mgy, =0

Mgq,0 — bearing capacity in uniaxial bending for Ny when Mg, =0

Unfavorable conclusion: due to biaxial bending there is a decreasing
in uniaxial resistance



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

Total area A, Defining areas A, and A,
Ay
Mgy
i As}'.'z
» ' . L :. .
5 'Ned
X I
Bl _.®. ..... Asl‘&:’_. E}:E}_"AEE? {-.-.-.ﬁi___{%)_.._._
Mrdz| !
NEd |
. : * * ® !L- .




8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

MRazo real
y diagonal of
" the section
I z } 3

r Medz | ’ .
K MEq _ ______ |
2 2 0 Meq T M
HEGR o
M Rdy M Rdz _
T =1
M Rdy0 M Raz0

Checking relationship (6) becomes:

a a
(7) oo, Medy N Meg, <1
M RdyO M Rdz0



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

EXPONENT a
SR EN 1992-1-1:2004 STAS 10107/0-90
Neag/Npg= 0.1 0.7 1.0 Bar arrangement
= [1,0[15]20 S 2 : <
o 3 - = bhf_, | 4 bars,inthe | morethan 4 bars | more than 4 bars
. corner Agy = Agz Ay =(1.5.2,0)A;;
Npg = bhfcq + AS’tOtfyd 0,1 1.60 1.70 1.75
0.2 135 1.60 1.50
0.3 125 1.55 1.40
0.4 1,20 1.50 135
0,5 1,20 1.45 135
0.6 135 1.45 1.40
0.7 1.55 1.50 1.50
0.8 1,75 1.60 1.60

1. Exponent was evaluated on the basis of numerical
analysis on the computer using general method (chp. 6.1).

2. The exponent was determined in such a way that, for
diagonal of the section, the simplified method to give
the same result as the general method (chp. 6.1).



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

8.4.3. Cross section check

Input data Output data

b; h; A iors Negs Megys Megs fogs fuas €

s,tot”

Fulfillment of the condition (7)

nom

Section verification involves the following steps:

- design axial resistance of section: Ngy = A f 4 + A fiq

- determination of the coefficient a depending on the ratio Ng,/Ng,

- establishing reinforcements (A;; = A,;), and (A, = A,),; bars in the
corners are considered for every direction

- calculation of resisting bending moment Mg, for N¢y and A

- calculation of resisting bending moment Mg, for N4y and A,

a a
M M
- checking condition [M Edy J +£I\/IEdzj <1
RdyO Rdz0




8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

8.4.4. Reinforcement calculation

Input data Output data

b; h; NEd; I\/IEdy; IVIEdz; fcd; f C A

yd? ~*nom s,tot

Reinforcement area is calculated for Mg, = M4, namely:

a a
M
{ Edy J +£ M g, J -1 — overlapping of points 1 and 2 (slide 79)

M Rdy0 M Rraz0 \
\

[
There is a problem: t\wo unknownsj & one equation

Mgays actually (A, = Asz)y
Mgq,; actually (A, = A,),




8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

Consequently, reinforcement calculation involves an infinity of solutions.

M :
N 1-1
/ ellipse for reinforcing i
Mgaz0 i T
192 i+1
3 /
)
)

0

0 > I\/Iy



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

Additional relationship is needed between Mgy, & Mgy,

Between bearing capacities My, & M, to be the same ratio
as between the bending moments Mgy, & M, :

M Ray M Edy
M Rdz M Edz
M Edy _ M g
M Rdy M Rdz

In this case equation (7) becomes:

Mo, ) ?
(8) oo ey | _[Mew | g5
M Rdy M Rdz




8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

The calculation procedure is as follows:

- it is estimated A
-Npg =Af 4 4+A

c'cd s,tot

s,tot

- choose exponent a depending on N /Ng,

a a
M M
- according to (8), choose Q=| — | —| ZEdz | <p5
M Rdy M Rdz

_Mey _Mey o5
I\/IRdy I\/IRdz

- required bearing capacity for y axis: Mgq, =M Edy/i‘/ﬁ

- required bearing capacity for z axis: Mgy =Mgq, /YQ



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

- calculation of reinforcement (A;; = A,,), shall be made for
Neg and Mgy, /¥Q in order to achieve required Mgy,

- calculation of reinforcement (A, = A,,), shall be made for
Ny and Mg, /¥Q in order to achieve required Mg,

- bar detailing

-if (Ag; = Ag,), is rounded up then (A, = A,;,), is rounded down

- with A, . o COMpute the new Ngg; if necessary calculation
is made again

Advantage: biaxial bending is divided in two uniaxial bending with increased moments

Note: using exponent from former romanian code no recalculation is required because
exponent a depends only on N /bhf_,



8.5. CIRCULAR/RING-SHAPED COLUMNS

|t=@-—D)2 E fed ,
T ¥ r — :F--'
" //?\‘\ 0.8x ——//r\ 0.8x x 7 P = } 4
v I~ ) T . ” : -
D 26 D:| D S / Nﬂg 4=
. MEd |
/] — |“ Fy
W 'Lds - EE ]IL;K',:/ & —_ 4
: rd
I Ac=mD¥a A.=7tD; D=(D.+D)/2 R

Bars are evenly distributed along the section contour

Reinforcement is considered evenly distributed on the contour if
in the section there are at least six bars

Calculation is based on the assumptions from chp. 6.1

In case of ring-shaped (annular) section it is recommended that
between the inner radius and the outer radius to have the following
relation:

r>00r,



8.5. CIRCULAR/RINGED-SHAPED COLUMNS

Failure is produced by:

- yielding of the most tensioned bars followed by crushing of
compression concrete;

- crushing of compression concrete without yielding of tension
bars;

- whatever is the way of failure, there are bars which are not
yielding.



8.5. CIRCULAR/RINGED-SHAPED COLUMNS

Approximate evaluation of reinforcement for 0,15 < @ = 1,0

with:
@y = Bt + B2
n=Mgy /A DI,
A, =0251D"
P1, P2 - coefficients depending on v = Nea/Acfeq
' Bi: Ba
45
L x\\\ P

3.0
2.0
1.0 B2
| — P2
0 D,S __E___‘--"'-?d‘ R
""'-—_________-r-""— ]_D 15 =

91



8.5. CIRCULAR/RINGED-SHAPED COLUMNS

Tools for current calculations
http://www.library.upt.ro/index.html?cursuri — File: 10_STALPI.pdf

Anexa 10.4. Tabele pentru calculul stalpilor cu sectiune circulara

' Ai:‘tl}‘[ i NEﬂ I\-IEd Ai,tﬂlf}’ﬂ f{‘,ﬂ
D V= A =t Ry = As,mt = Wy A f_
l cod A-:ch:i Acf-:d yd
, d.
Purpose of calculation — A ot Mr4
1 Inputdata Ugd & VEd VEd & @
2 Qutputdata (Dreq Lrd
3 Result A ot = OregAcfa/fi Mgd = UraAcDflq
Values 1000 for ® =
0 0.20 (Dgaq 0] 0] 0.45 0.50
1.00 : i
: i
| :
VEd - ---reinforcement design - - - - * (1000 g4 :
’
VEd —---- - - MRra calculation -==--F------- > |1000 g
0




8.5. CIRCULAR/RINGED-SHAPED COLUMNS

Anexa 10.5 Tabele pentru calculul stalpilor cu sectiune inelara

As:tﬂt N _ £ £
= + D M St e
— D=05De+ D) = X L= = Whor = L Ag tor = Do Acﬂ
t= D-'S':DE - Dy Acf-:d Ach-:d Acf-:d . f‘r’ﬂ
A.=mtD )
Purpose of calculation — As tot Mpg
1 Inputdata lEa & VE4 VEd & @
2 Qutputdata (Dreq Lrd
3 Result Ag:tﬂt == ({]feq&ff:dﬁf}'d h{Rd == j\-iRdACDde
Values 1000 for @ =
0 0,20 (Dgzq 0) 0) 0,45 | 0.50
1,00 it i
: i
' i :
VEd - - - reinforcement design - --- * (1000 g4 :
;
VEqd =---- -- Mga calculation -==--F------- > 1000 g4
0




8.6. DETAILING OF COLUMNS

EN 1992-1-1:2004

SR EN 1992-1-1:2006

National Annex SR EN 1992-1-1/NB:2008

P100-1/2013 — very specific provisions & highly severe

ANCHORAGE & BAR LAPS — CHP. 2.2

CROSS SECTION DIMENSIONS
Usually h/b < 2,5, maximum value being 4

The minimum size of the rectangular cross section is 300 mm
The minimum diameter of circular cross section is 300 mm

Usually sizes are multiples of 50 mm

LONGITUDINAL REINFORCEMENTS
Oin = 8 MmM; ..... NA: 12 mm; ....in romanian practice f 3 14 mm

A = max

S min
0,2%A; ...... NA: 0,4%A.

A, ... = %A,

S max



8.6. DETAILING OF COLUMNS

- shear force;
TRANSVERSAL REINFORCEMENTS < - compressed concrete confinement;

- no buckling of longitudinal bars between stirrups

6 mm
¢ > max
Prong/4 ;
one 2O(I)min_long
spacing of the transverse reinforcement s, <s ., = max < min (b; h)
400 mm
Scitmax Should be reduced by a factor 0,6:
- above or below a beam or slab - near lapped joints if ¢, > 14 mm
5S¢l tpax =T
I: £;
max (b; h) -
I::'=55-:].'.11'_=_:-: : M
e max'(b; h)
v g




8.6. DETAILING OF COLUMNS

- shear force;
TRANSVERSAL REINFORCEMENTS < - compressed concrete confinement;

- no buckling of longitudinal bars between stirrups

Weak stirrup = small ¢ & large distance between stirrups

./’”'.* -"'

‘ﬂu

Weak stirrups:

- buckling of longitudinal bars
between stirrups

-no confinement of compressed Buckling in lap zone High Vg4 with weak stirrups
concrete with weak stirrups (0,6 m) 96

Northridge Earthquake, 1994

San Fernando, 1971




8.6. DETAILING OF COLUMNS

ARRANGEMENT OF BARS Changes In Column Size

s
P if tgo, > 1/12 |

] | 11 |1 i the spacing of transverse
- | (\IJ | reinforcement should be
ﬁ? } ‘ > 0,75h, calculated, taking account of
BERi the lateral forces involved
/ = 12¢



¥

8.6. DETAILING OF COLUMNS

inner stirrups
f\

enclosing stirrup ———s 7 ]
7 \f
— * " Z
: 8 N
links
b N 4

enclosing stirrup

enclosing stirrup

Z,

inner stirrups b J| L | ke

Every longitudinal bar placed in a corner of the
section should be held by transverse reinforcements

98



8.6. DETAILING OF COLUMNS

No bar should be further than 150 mm from a I |
) ) ) . > S0mm < 150mm
restrained bar (in corner of stirrup; connected to a link) = 5 .

—agrafa
necesara

stirrup A

Due to compressive force there is longitudinal
shortening & transversal swelling of concrete

Red curves: deformed shape of the stirrup
produced by swelling of concrete

Arrows show bars in tension due to swelling of
—— concrete

|| | Link in case A has contribution to confinement

\L l i \L Link in case B has no contribution to
confinement



