
8. COLUMNS
COLUMN = ELEMENT SUBJECTED TO:

BENDING MOMENT
&

COMPRESSIVE FORCE

ECCENTRIC
COMPRESSIVE FORCE

1





8. COLUMNS
RECTANGULAR SECTION

Eccentric
compression

Compression with
biaxial bending
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CIRCULAR SECTION RING-SHAPED SECTION



8. COLUMNS

DESIGN SITUATIONS

PERSISTENT                                       SEISMIC
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Ductility class DCL: only in areas with ag  0,10g

limNfA45,0N cdcEd 

limNfA50,0N cdcEd 
limNfA40,0N cdcEd 

limNfA55,0N cdcEd 

P100-1/2006 P100-1/2013

Ductility class DCH:
Ductility class DCM:



8. COLUMNS

COLUMNS + GIRDERS = FRAME

SENSITIVE TO LATERAL DISPLACEMENT

4

HIGH VALUES   OF THE BENDING MOMENTS
IN  COLUMNS AND GIRDERSS



8. COLUMNS
BRACING SYSTEMS ARE USED IN ORDER TO

REDUCE THE LATERAL DISPLACEMENT

Contravântuire
metalică

Perete din beton
armatContravântuire

metalică

Perete din
beton armat

Reinforced
concrete wall Metal bracing
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Contravântuire
metalică

Perete din beton
armatContravântuire

metalică

Perete din
beton armat

AS A RESULT OF THE ABOVE:
• BRACED COLUMNS
• UN-BRACED COLUMNS

Metal bracing



8. COLUMNS

THE ENDS OF THE COLUMNS CAN HAVE DIFFERENT TYPES OF
CONNECTIONS WITH NEIGHBORING ELEMENTS:

• RESTRAINED DISPLACEMENTS & ROTATIONS (AS FOUNDATIONS)

• PARTIALLY FREE  DISPLACEMENTS & ROTATIONS DEPENDING ON:
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• PARTIALLY FREE  DISPLACEMENTS & ROTATIONS DEPENDING ON:
- stiffness of neighboring elements
- with or without bracings

• FREE  DISPLACEMENTS & ROTATIONS



8. COLUMNS

First order effects - M0Ed: action effects calculated without
consideration of the effect of structural deformations, but including
geometric imperfections

DEFINITIONS

Second order effects - M: additional action effects caused by
structural deformations
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Second order effects - M: additional action effects caused by
structural deformations

Second order moment - MEd = M0Ed ( > 1,0) : bending
moment, taking into account the influence of structural
deformations



8. COLUMNS
The second order effects are produced by two types of deformations:

Lateral deformations of the story:

- depends on the structural stiffness,
- characteristic for unbraced structures
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- depends on slenderness &
neighboring elements

- characteristic for braced structures
- may cause buckling

Individual deformations of the element:



8. COLUMNS

Buckling: failure due to instability of a member or structure
under perfectly axial compression and without transverse load

Buckling load: the load at which buckling occurs; for isolated
elastic members it is synonymous with the Euler load
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Effective length: a length used to account for the shape of the
deflection curve; it can also be defined as buckling length.

Isolated members: members that are isolated, or members in a
structure that for design purposes may be treated as being isolated



8. COLUMNS

8.1. GEOMETRIC IMPERFECTIONS

8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

8.4. BIAXIAL BENDING OF COLUMNS WITH RECTANGULAR
CROSS SECTION

8.5. CIRCULAR/RING-SHAPED COLUMNS

8.6. DETAILING OF COLUMNS
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8.1. GEOMETRIC IMPERFECTIONS

8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

8.4. BIAXIAL BENDING OF COLUMNS WITH RECTANGULAR
CROSS SECTION

8.5. CIRCULAR/RING-SHAPED COLUMNS

8.6. DETAILING OF COLUMNS



8.1. GEOMETRIC IMPERFECTIONS

The unfavorable effects of possible deviations shall be taken
into account in the analysis of members and structures.

Deviations:
- cross section dimensions
- geometry of the structure
- position of loads

Deviations in cross section dimensions:
- are normally taken into account in the material safety factors
- these should not be included in structural analysis
- for cross section design it is necessary to assume the minimum

eccentricity, e0 = h/30 but not less than 20 mm where h is the depth
of the section
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Deviations in cross section dimensions:
- are normally taken into account in the material safety factors
- these should not be included in structural analysis
- for cross section design it is necessary to assume the minimum

eccentricity, e0 = h/30 but not less than 20 mm where h is the depth
of the section

h

h



8.1. GEOMETRIC IMPERFECTIONS

Deviations in the geometry of the structure:

• shall be taken into account in ultimate limit states in:
- persistent design situations
- accidental design situations

• need not be considered for serviceability limit states
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Deviations in the geometry of the structure:

• shall be taken into account in ultimate limit states in:
- persistent design situations
- accidental design situations

• need not be considered for serviceability limit states



8.1. GEOMETRIC IMPERFECTIONS

IMPERFECTIONS MAY BE REPRESENTED BY AN INCLINATION

mh0i 

20010  - basic value
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8.1. GEOMETRIC IMPERFECTIONS

 FH ii

UNBRACED STRUCTURE
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 FH ii



8.1. GEOMETRIC IMPERFECTIONS

BRACED STRUCTURE
 abii NNH 
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ACTION ON FLOOR   2NNH abii 



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

First order effects - M0Ed: action effects calculated without consideration of
the effect of structural deformations, but including geometric imperfections
Second order effects - M: additional action effects caused by
structural deformations
Second order moment - MEd = M0Ed ( > 1,0) : bending moment,
taking into account the influence of structural deformations

8.2.1. TOPIC OF SECOND ORDER EFFECTS
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Second order moment - MEd = M0Ed ( > 1,0) : bending moment,
taking into account the influence of structural deformations



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

ELEMENT SENSITIVITY TO SECOND ORDER EFFECTS DEPENDS ON SLENDERNESS RATIO

i
0

0 - effective length

i – radius of gyration
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THERE ARE 3 CASES OF COLUMN FAILURE DEPENDING ON SLENDERNESS RATIO

Longitudinal force increases from zero till column failure

Cantilevered column

M0Ed = Ne
M = N



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Slender columns 35 <   120
• important second order effects
• bending moment increases faster than

longitudinal force curve b
• element failure is produced by

exhaustion of bearing capacity to a
force equal to           <

• - is the buckling force

b
RdN b

BN
b
BN
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Short columns   35
• negligible second order effects
• bending moment is proportional to the

longitudinal force line a
• element failure is produced by

exhaustion of bearing capacity to a
force equal to a

RdN

• important second order effects
• bending moment increases faster than

longitudinal force curve b
• element failure is produced by

exhaustion of bearing capacity to a
force equal to           <

• - is the buckling forceb
BN

Very slender columns  > 120
• buckling occurs at the force
• deformations increase indefinitely

under constant force
• in this case bearing capacity c

B
c
Rd NN 

c
BN



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

2
0

2

B
EIN

l
 - Euler formula for buckling load of isolated columns

(1707 – 1783)

19



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

2
0

2

B
EIN

l


Euler formula does not correctly describe the correlation between
bearing capacity and element slenderness

2nd order effects
may be ignored EC2 defines lim

Real correlation
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lim

Real correlation



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.2.2. SLENDERNESS AND EFFECTIVE LENGTH OF
ISOLATED MEMBERS

21

a) double pined column in braced structures; not suitable in seismic areas

b) column in one level unbraced precast structure

c) column in one level braced precast structure

d) double fixed column in braced structure; bottom end = foundation !;
top end = very stiff girder ?

e) case d in braced structure

f) column in braced structure; node rotation is possible
g) foundation rotation of case b



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE
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Braced structure:
- no lateral deformations
- node rotations

Double pinned
column

Double fix
column

Real
column

Extreme situations



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE
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Unbraced structure:
- lateral deformations
- node rotations

Double fix column & free
lateral deformations

Real
column
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8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Braced columns

Unbraced columns

Re
gu

la
r f

ra
m

es
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 
  10
EI2

EI
k

b

c ,
 



Alternative procedure for k in case of braced frame

c – considered column
b – adjacent girders at the top & bottom column ends

Static analysis
is required



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

PRELIMINARY ASSESSMENT:  0
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1 – fixed to foundation; monolithically connected to a beam hb  hc
2 – connected to a slab; monolithically connected to a beam hb < hc
3 - connected to simple supported beam
4 – unrestrained



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

For members with varying normal force and/or cross section

26

Brepr0 NEI

EIrepr – representative stiffness
NB – buckling load calculated by appropriate
software or numerical methods



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.2.2. CREEP INFLUENCE

eNM EdEd0 

 EdEd0Ed NMM

1ST order bending moment:

2nd order bending moment
without creep influence:
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  1NMM EdEd0Ed

 EdEd0Ed NMM

2nd order bending moment with
creep influence:

The duration of loads may be taken into account by:  
Ed0

pEdq0
0ef M

M
t,

Ed0

pEdq0

M

M - calculated for section with maximum bending moment
 or

- a representative mean value



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.2.3. SIMPLIFIED CRITERIA FOR SECOND
ORDER EFFECTS

Second order effects may be ignored if they are less than 10 %
of the corresponding first order effects
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8.2.3.1. Slenderness criterion for isolated members

Second order effects may be ignored if lim

nABC20lim 



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE
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8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

lim based on accepted simplifications for coefficients A, B & C

30



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Global second order effects in buildings may be ignored if

8.2.3.2. Global second order effects in buildings

31

k1 = 0,31
k1 = 0,62 if it can be verified that bracing members are uncracked in ultimate limit state



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Previous expression is valid only if all the following conditions are met:

- global shear deformations are negligible (as in a bracing system mainly
consisting of shear walls without large openings)

- torsional instability is not governing, i.e. structure is reasonably symmetrical

32

- bracing members are rigidly fixed at the base, i.e. rotations are negligible

YES NO NO

- the stiffness of bracing members is reasonably constant along the height

- the total vertical load increases by approximately the same amount per storey



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.2.4. Methods of analysis
General method based on nonlinear analysis
EC2 – 5.8.6

Method based on nominal curvature

Method based on nominal stiffness
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General method based on nonlinear analysis
EC2 – 5.8.6

Method based on nominal curvature

Method based on nominal stiffness

Last two methods are simplified solutions.

There is the possibility of the second order static analysis (nonlinear
static analysis) based on nominal stiffness. Efforts resulting from this
calculation include second order effects.



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.2.4.1. Method based on nominal curvature
Method is suitable for isolated columns with constant NEd and defined l0

max M2 = NEde2
l0

sine-shaped
curvature
distribution

34

M0Ed

max M2 = NEde2

Second order effects depends on element deformed shape
Maximum deflection e2 depends on curvature 1/r  in the moment of failure
1/r depends on NEd & creep

l0
sine-shaped
curvature
distribution sine-shaped moment M2

distribution



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

CURVATURE

For members with constant symmetrical
cross sections, including  reinforcement:

0r r1KKr1  

Kr – correction factor for axial load

35

lim

yd

0 xdr
1






0r1 - maximum curvature corresponds to
balance situation (maximum bending
moment)

Kr – correction factor for axial load

K – correction factor for creep



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Higher NEd smaller curvature 1/r

r1

NN

r1

NN Edu

0

balu 





correction

balu

Edu
0 NN

NN
r1r1




 : Acfcd

Correction factor Kr
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fAfAN cdcydtots,u 


correction

balu

Edu
0 NN

NN
r1r1






01
nn

nn
K

balu

u
r ,






cdc

Ed

fA

N
n 

1nu

cdc

ydtots

fA

fA ,

cdcdlimbal bdf0,4bdfξN 

c
RdN


limN

Chp. 6



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Correction factor K

011K ef ,

150200f350 ck  ,

i
0  slide  14
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i
0

 
Ed0

pEdq0
0ef M

M
t,  slide  24

 slide  14



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

BENDING MOMENTS

2Ed0Ed MMM 

2Ed2 eNM 

  cr1e 2
02 

c - factor depending on the curvature distribution; for constant cross section:
2  10 – for sine-shaped  distribution of curvature
8 – for constant curvature distribution (constant bending moment)

………… ()
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c - factor depending on the curvature distribution; for constant cross section:
2  10 – for sine-shaped  distribution of curvature
8 – for constant curvature distribution (constant bending moment)

1/r – curvature  slide 32

l0 – effective length  slides 18 … 23

The meaning of relation () is the summation
of M0Ed diagram with M2 diagram.
The resulting diagram allows for the maximum
bending moment.



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

1st order bending moment  linear diagram; maximum value at the column ends

2nd order bending moment  sine-shaped diagram between inflexion points

Braced column

Unbraced column

Inflexion point

39

arithmetic summationalgebraic summation



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Braced columns

Different first order end moments M01 and  M02 may be
replaced by an equivalent first order end moment M0e

40

020102e0 M4,0M4,0M6,0M 

M01 and M02 should have the same sign if they give tension on
the same side, otherwise opposite signs.
Furthermore, M02 M01.



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Maximum 1st order bending moments occur at the element ends
The maximum 2nd order bending moment occurs at about mid-length of column

Therefore it is possible that the maximum bending moment is no longer at
the element ends

41

+

In such cases, the design bending moment is defined by:

 2012e002Ed M50M;MM;MmaxM ,



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Unbraced columns

Lateral displacements may be generated by:
- asymmetry of the structure;
- horizontal seismic or wind forces.

All  columns have the same mode of deformation due to high
stiffness of reinforced concrete floors.

Therefore, it is reasonable to use an average curvature, even though
the columns may have different rigidities.

42

Therefore, it is reasonable to use an average curvature, even though
the columns may have different rigidities.

Maximum 2nd bending moment occurs at that end of the column
which has the highest stiffness.



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Addition of  2nd bending moment to 1st bending moment

For the same rigidity at the both ends of column addition is done to the maximum
1st bending moment
For different rigidities of column ends the addition is done as follows:

- to the maximum 1st bending moment  (which corresponds to highest rigidity)

- at the opposite end, the additional bending moment may be reduced in
proportion to the ratio of the rigidities at the two ends of the column

43

- at the opposite end, the additional bending moment may be reduced in
proportion to the ratio of the rigidities at the two ends of the column



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.2.4.2. Method based on nominal stiffness
In a second order analysis based on stiffness, nominal values of the
flexural stiffness should be used, taking into account the effects of

• cracking,
• material non-linearity
• creep

on the overall behavior.

44

The resulting design moment is used for the design of cross
sections to bending moment and axial force

This also applies to adjacent members involved in the analysis:.
• beams
• slabs.

Where relevant, soil-structure interaction should be taken into account.



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

NOMINAL STIFFNESS

sssccdc IEKIEKEI 
Ecd - Design value of the modulus of elasticity of concrete

cEcmcd EE  ; cE = 1,2

Ic - moment of inertia of concrete cross section
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Ic - moment of inertia of concrete cross section

Es - design value of the modulus of elasticity of reinforcement

Is - second moment of area of reinforcement, about the
centroid of area of the concrete

Ks = 1 - factor for contribution of reinforcement

Kc - factor for effects of cracking, creep, etc.



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

 ef21c 1kkK  if   0,002

cs AA - reinforcing ratio

As - total area of reinforcement
Ac - area of concrete section

ef - effective creep ratio slide 24
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ef - effective creep ratio slide 24
20fk ck1 

200
170

nk2 ,


cdcEd fANn 

with  - slenderness ratio

20030nk2 ,,  if  is not defined



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

In statically indeterminate structures, unfavorable effects of cracking in
adjacent members should be taken into account.

Expressions from slides 45 & 46 are not generally applicable to such
members. Partial cracking and tension stiffening may be taken into account
according chp. 16.3. Simplified approach of deflection control

47

 efcdefcd 1EE ,

Expressions from slides 45 & 46 are not generally applicable to such
members. Partial cracking and tension stiffening may be taken into account
according chp. 16.3. Simplified approach of deflection control

However, as a simplification, fully cracked sections may be assumed.

The stiffness should be based on an effective concrete modulus:

Note: Meaning of the text Fully cracked section is presented in chp. 16.3



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

MOMENT MAGNIFICATION FACTOR
The total design bending  moment MEd, including second order
effects, may be obtained by increasing M0Ed as follows:

  












1NN
1MM

EdB
Ed0Ed ……. (**)
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NEd – design value of axial force

NB – buckling load based on nominal stiffness

 – factor depending on distribution of 1st and 2nd order moments

 = 2/c0 – for sine-shaped distribution of 2nd order moments of isolated columns

c0 – factor depending on distribution of 1st order moment:
c0 = 8 for a constant bending moment
c0 = 9,6 for a parabolic distribution
c0 = 12 for symmetric triangular distribution



8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Where provision for  or c0 are not applicable,  = 1 is a reasonable simplification.

Ed0
BEd

Ed0
Ed M

NN1

M
M 




Consequently, relation (**) turns into:
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Ed0
BEd

Ed0
Ed M

NN1

M
M 




BEd NN1

1






8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Braced columns

For members without transverse load, different first order end moments M01 and M02
may be replaced by an equivalent constant first order moment M0e (see slide 37).

c0 = 8

Depending on slenderness and axial force, the end bending moments can be
greater than the magnified equivalent moment M0e

50

Therefore relation (**) from slide 45 is rewritten as follows:

  02
EdB

2

e0Ed M
1NN8

1MM 



















8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

Unbraced columns

The same l0 for all columns because they “work” together due
to monolithic floor

 
Ed0

pEdq0
0ef M

M
t,Slide 27:
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Discussion on M0Eqp used for ef : no horizontal variable loads (e.g. wind,
bridge crane) are taken into account because do not induce creep

 
Ed0

pEdq0
0ef M

M
t,



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

8.3.1. Balance situation
Chp. 6.5 – slide 17

syd Ef100053
53

d
x




,

,lim
lim
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1s2sc FFFN lim

cdcdc bdf80fbx80FN limlimlim ,, 

F = 0F = 0
b



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

b

53

M = 0M = 0 related to the As1 axis



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

NEd  Nlim - compressive force with prevailing bending
- ductile failure due to yield of
tensioned reinforcement

- compulsory in case of seismic areas

NEd > Nlim - bending with prevailing compression
- brittle failure by crushing of concrete
without yielding of reinforcement As1
(whether it is tensioned or compressed)

- brittle character becomes stronger with the
increasing of the compressive force

TWO WAYS OF FAILURE
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NEd  Nlim - compressive force with prevailing bending
- ductile failure due to yield of
tensioned reinforcement

- compulsory in case of seismic areas

NEd > Nlim - bending with prevailing compression
- brittle failure by crushing of concrete
without yielding of reinforcement As1
(whether it is tensioned or compressed)

- brittle character becomes stronger with the
increasing of the compressive force



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

8.3.2. Section analysis

55

Stress diagram corresponds to
yielding of As1 and As2

b



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

  lim

TENSION REINFORCEMENT YIELDING  BEFORE
CONCRETE CRUSHING

STRESS IN  COMPRESSION REINFORCEMENT
There is yielding of compression reinforcement if s2  yd

yd
s2

cu2s x

dx



 2s

ydcu

cu dx





xy
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yd
s2

cu2s x

dx



 2s

ydcu

cu dx





Steel PC52 PC60 S400 S500

xy 1,69d2 1,91d2 1,98d2 2,64d2

STAS 10107/0-97 2,0d2

x  xy s2 = fyd

x < xy s2 < fyd
• no yielding of compression reinforcement
• procedure in the chapter 6.4 (slide 12) applies
• simplified approach: Fc is acting at the level of Fs2

xy



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

F = 0F = 0

(1) ……….

57

Let’s assume yielding

Case I:  = x/d  lim the same as   NEd  Nlim  As1 yields
Case II:  = x/d > lim the same as   NEd > Nlim  As1 does not yield



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

M = 0M = 0 related to the As1 axis

Case I: compression with prevailing bending - As1 yields
(eccentric compression with large eccentricity)

x  xy  As2 yields

slide 57: using relationship (1)

58

slide 57: using relationship (1)

resisting bending moment

(2) …..



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

x < xy  As2 does not yield
simplified approach: Fc is located at the level of As2

M = 0M = 0  related to the As2 axis:

(3) ……

59

resisting bending moment

(3) ……



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

Case II: bending with prevailing compression - As1 does not yield
(eccentric compression with low eccentricity)

x > xlim >> xy  As2 yields

Procedure described in cpt. 6.4 (slides 12, 13) should be
applied using c- c & s- s diagrams

60

Procedure described in cpt. 6.4 (slides 12, 13) should be
applied using c- c & s- s diagrams

In what follows, relationships between the stress in
reinforcement As1 and neutral axis position are used
without the need for stress-strain diagram.
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dxx lim

61

From triangles (red & black lines):

xd
x

xd
x 1s

lim

yd
limcu




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


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





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8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

dx 

62

It is accepted that s1 is directly proportional to neutral axis depth



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

In view of the above, the stress in reinforcement As1 is
defined by the relationship:

  yd1s fxf 

 
   
 

















hxfor0,1

hxdorfddx4

dx<xorfxdxxdx

xf

limlimlim
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 
   
 

















hxfor0,1

hxdorfddx4

dx<xorfxdxxdx

xf

limlimlim

NOTE:
Minus stands  for compression
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F = 0F = 0

OR

64

M = 0M = 0  related to the As1 axis:

resisting bending moment



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

8.3.3. Reinforcement design
Input data Output data

MEd; NEd; b; h; fcd; fyd; cnom As1 = As2; x; and eventually s1
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8.3. COLUMNS WITH RECTANGULAR CROSS SECTION
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8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

8.3.4. Cross section check
Input data Output data

MEd; NEd; b; h; fcd; fyd; As1 = As2; cnom MRd; x; and eventually s1

67



8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

Simplified check for case II of compression accepting M-N curve in the form of a line
where NEd > Nlim

lim
c
Rd

limR

Ed
c
Rd

Rd

NN

M

NN

M






  yd2s1scd
c
Rd fAAbhfN 
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c
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
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8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

8.3.5. Alternative calculation tools
http://www.library.upt.ro/index.html?cursuri  File: 10_STALPI.pdf

Anexa 10.1 Nomograme pentru calculul stâlpilor cu secţiune dreptunghiulară
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8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

Anexa 10.2 Tabele pentru calculul stâlpilor cu secţiune dreptunghiulară
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



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

71

Independent design in each principal direction, disregarding biaxial
bending, may be made as a first step.

Imperfections need to be taken into account only in the
direction where they will have the most unfavourable effect.



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

No further check is necessary if the slenderness ratios
satisfy the following condition:

250 zy ,
and if the eccentricities ey and ez satisfy one the
following conditions:

20
be

he

z

y , 20
he

be

y

z ,

(4a) ….…………..
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20
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y , 20
he

be

y

z ,or(4b) ….…………..



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

73

Definition of eccentricities
ey and ez

Graphical representation of
the condition (4b)

If the condition of Expression (4) is not fulfilled, biaxial
bending should be taken into account including the 2nd

order effects in each direction



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

Procedure according to BS 8100 , also accepted by IStructE

Column may be design for a single
axis bending but with an equivalent
bending moment as follows:

y

Edy

z

Edz

d

M

d

M
- for:
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Edy
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z
NEdz
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8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

8.4.1. Basics of calculation

75

Reinforcement is distributed on all sides of the section



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

Calculation is based on the assumptions from chp. 6.1

Force line is characterized by zyEdyEdz eeMMtg 

Position of the  neutral axis is selected in such a way that internal
forces (namely Fc+Fs2 and Fs1) to be located on the line of forces
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Position of the  neutral axis is selected in such a way that internal
forces (namely Fc+Fs2 and Fs1) to be located on the line of forces

Failure is produced by:

- whatever is the way of failure, there are bars which are not
yielding

- yielding of the most tensioned bars followed by crushing of
compression concrete, according to pivot B;

- crushing of compression concrete without yielding of tension
bars, according to pivot C;



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

INTERACTON SURFACE FOR COMPRESSION WITH BIAXIAL BENDING

By vectorial summation results:
Static analysis: NEd; MEdy ; MEdz

2
Ed

2
Ed

2
Edz

2
Edy

2
EdEd MNMMNR 

Bearing capacity is:
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2
Rd

2
Rd

2
Rdz

2
Rdy

2
RdRd MNMMNR 

Bearing capacity is:

The two vectors are in the same
meridian plan P

The cross section resists to loads if point 2 (corresponding to the vector
REd) is inside the interaction surface or overlapped on the point 1:

RdEd RR (5) …………………………..……….



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

8.4.2. Simplified procedure of calculation

Simplified procedure, taking into account the interaction of bending
moments MEdy and MEdz for a constant axial force NEd, may be used for
calculation by hand

This method is suitable for structures located in seismic areas
because the bending moments increase under constant
gravitational load.

Load Contour Method

78

This method is suitable for structures located in seismic areas
because the bending moments increase under constant
gravitational load.

RdEd MM 

In this case, equation (5) becomes:

2
Ed

2
Ed MN  2

Rd
2
Rd MN 

(6) ……………………….………..……….



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

In
te

ra
ct
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n 
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rv

e 
M

y


M
z

The simplified procedure is based on the replacement of actual curve of
interaction, dependent on angle , with a simplified elliptic curve

Calculation procedure is safe
because simplified curve is
located inside the real one
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z

Calculation procedure is safe
because simplified curve is
located inside the real one

MRdy0 – bearing capacity in uniaxial bending for NEd when MEdz = 0
MRdz0 – bearing capacity in uniaxial bending for NEd when MEdy = 0

Unfavorable conclusion: due to biaxial bending there is a decreasing
in uniaxial resistance



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

Defining areas Asy and AszTotal area As,tot
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8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION
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Checking relationship (6) becomes:
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(7) ……...



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

ydtotscdRd fAbhfN ,

EXPONENT a

SR EN 1992-1-1:2004 STAS 10107/0-90
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1. Exponent was evaluated on the basis of numerical
analysis on the computer  using general method (chp. 6.1).
2. The exponent was determined in such a way that, for
diagonal of the section, the simplified method to give
the same result as the general method (chp. 6.1).



8.4. BIAXIAL BENDING OF COLUMNS WITH
RECTANGULAR CROSS SECTION

8.4.3. Cross section check

Input data Output data

b; h; As,tot; NEd; MEdy; MEdz; fcd; fyd; cnom Fulfillment of the condition (7)

Section verification involves the following steps:

83

- design axial resistance of section: NRd = Acfcd + As,tot fyd

- determination of the coefficient a depending on the ratio  NRd/NEd

- establishing reinforcements (As1 = As2)y and (As1 = As2)z; bars in the
corners are considered for every direction

- calculation of resisting bending moment MRdy for NEd and Asy

- calculation of resisting bending moment MRdz for NEd and Asz

- checking condition 1
M
M

M

M
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0Rdz

Edz
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
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RECTANGULAR CROSS SECTION

8.4.4. Reinforcement calculation

Input data Output data

b; h; NEd; MEdy; MEdz; fcd; fyd; cnom As,tot

  Reinforcement area is calculated for MRd = MEd , namely:
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





 overlapping of points 1 and 2 (slide 79)

There is a problem:

MRdy; actually (As1 = As2)y
MRdz; actually (As1 = As2)z

two unknowns & one equation
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1  2

ellipse for reinforcing i

i - 1

i + 1

Mz

MRdz0 i

Consequently, reinforcement calculation involves an infinity of solutions.
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1  2 i + 1

My


MRdy0 i
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Additional relationship is needed between MRdy & MRdz

Between bearing capacities MRdy & MRdz to be the same ratio
as between the bending moments MEdy & MEdz :
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In this case equation (7) becomes:

(8) ………
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The calculation procedure is as follows:

- it is estimated As,tot

- NRd = Acfcd + As,tot

- choose exponent a depending on NEd/NRd

5,0
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- according to (8), choose 5,0
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M
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- required bearing capacity for z axis:

a
EdyRdy MM 

a
EdzRdz MM 

- required bearing capacity for y axis:
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- calculation  of reinforcement (As1 = As2)y shall be made for
NEd and                   in order to achieve required MRdy

- bar detailing

a
EdyM 

- calculation  of reinforcement (As1 = As2)z shall be made for
NEd and                   in order to achieve required MRdz

a
EdzM 
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- bar detailing

- with As,tot eff compute the new NRd; if necessary calculation
is made again

Advantage: biaxial bending is divided in two uniaxial bending with increased moments

Note: using exponent from former romanian code no recalculation is required because
exponent a depends only on NEd/bhfcd

- if (As1 = As2)y is rounded up then (As1 = As2)z is rounded down



8.5. CIRCULAR/RING-SHAPED COLUMNS

89

Bars are evenly distributed along the section contour

Reinforcement is considered evenly distributed on the contour if
in the section there are at least six bars

Calculation is based on the assumptions from chp. 6.1

In case of ring-shaped (annular) section it is recommended that
between the inner radius and the outer radius to have the following
relation:

ei r50r ,



8.5. CIRCULAR/RINGED-SHAPED COLUMNS

Failure is produced by:

- yielding of the most tensioned bars followed by crushing of
compression concrete;

- crushing of compression concrete without yielding of tension
bars;
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- whatever is the way of failure, there are bars which are not
yielding.

- crushing of compression concrete without yielding of tension
bars;



8.5. CIRCULAR/RINGED-SHAPED COLUMNS
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8.5. CIRCULAR/RINGED-SHAPED COLUMNS

http://www.library.upt.ro/index.html?cursuri  File: 10_STALPI.pdf
Tools for current calculations

Anexa 10.4. Tabele pentru calculul stâlpilor cu secţiune circulară
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8.5. CIRCULAR/RINGED-SHAPED COLUMNS

Anexa 10.5 Tabele pentru calculul stâlpilor cu secţiune inelară
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8.6. DETAILING OF COLUMNS

EN 1992-1-1:2004
SR EN 1992-1-1:2006
National Annex SR EN 1992-1-1/NB:2008
P100-1/2013 very specific provisions & highly severe

Usually h/b  2,5, maximum value being 4

The minimum size of the rectangular cross section is 300 mm

CROSS SECTION DIMENSIONS

ANCHORAGE & BAR LAPS CHP. 2.2

94

The minimum size of the rectangular cross section is 300 mm
The minimum diameter of circular cross section is 300 mm

Usually sizes are multiples of 50 mm

LONGITUDINAL REINFORCEMENTS
min = 8 mm; ….. NA: 12 mm; …. in romanian practice   14 mm

As min = max
0,2%Ac; …… NA: 0,4%Ac

0,1NEd/fyd

As max = 4%Ac



8.6. DETAILING OF COLUMNS

TRANSVERSAL REINFORCEMENTS

  max
long/4

6 mm

spacing of the transverse reinforcement scl,t  scl,tmax = max     min (b; h)
400 mm

20min_long

- shear force;
- compressed concrete confinement;
- no buckling of longitudinal bars between stirrups
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400 mm

scl,tmax should be reduced by a factor 0,6:
- above or below a beam or slab - near lapped joints if max > 14 mm



8.6. DETAILING OF COLUMNS

TRANSVERSAL REINFORCEMENTS
- shear force;
- compressed concrete confinement;
- no buckling of longitudinal bars between stirrups
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Weak stirrup = small  & large distance between stirrups
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Buckling in lap zone
with weak stirrups

High VEd with weak stirrups
(0,6 m)

Weak stirrups:
- buckling of longitudinal bars
between stirrups
-no confinement of compressed
concrete
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8.6. DETAILING OF COLUMNS

Changes In Column SizeARRANGEMENT OF BARS
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if tg > 1/12

the spacing of transverse
reinforcement should be
calculated, taking account of
the lateral forces involved



8.6. DETAILING OF COLUMNS

enclosing stirrup

links

enclosing stirrup

inner stirrups

98

enclosing stirrup

inner stirrups

Every longitudinal bar placed in a corner of the
section should be held by transverse reinforcements



8.6. DETAILING OF COLUMNS

No bar should be further than 150 mm from a
restrained bar (in corner of stirrup; connected to a link)

link

stirrup
Due to compressive force there is  longitudinal
shortening & transversal swelling of concrete

Red curves: deformed shape of the stirrup
produced by swelling of concrete

Arrows show bars in tension due to swelling of
concrete

Link in case A has contribution to confinement

Link in case B has no contribution to
confinement

A
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Due to compressive force there is  longitudinal
shortening & transversal swelling of concrete

Red curves: deformed shape of the stirrup
produced by swelling of concrete

Arrows show bars in tension due to swelling of
concrete

Link in case A has contribution to confinement

Link in case B has no contribution to
confinement

A

B


