Course notes

CRACKING AND CRACK CONTROL

Dr. NAGY-GYÖRGY Tamás Professor

E-mail: tamas.nagy-gyorgy@upt.ro

Tel: +40 256 403 935

Web:

http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm

Office: A219

Course notes

1. CAUSES OF CRACKING

2. GENERAL CONSIDERATIONS ABOUT CRACK CONTROL

3. CRACK CONTROL BY CALCULATION

4. CRACK CONTROL WITHOUT CALCULATION

5. MINIMUM REINFORCEMENT AREAS

1. Causes of cracking / Cauzele fisurării

CAUSES OF CRACKING

Cracking of reinforced concrete elements \rightarrow an unavoidable phenomenon

 \Rightarrow the inability of concrete to take tensile stresses

Cracks could be:

- Extrinsic = produced be external causes

- loads

- imposed deformations

- Intrinsic = generated in the interior of concrete
 - restrained shrinkage of concrete
 - variation of temperature
 - plastic settlement of fresh concrete
 - expansive products of corrosion
 - freeze-thaw repeatedly actions
 - irregularities in the execution process

FISURAREA ȘI CONTROLUL FISURĂRII / CRACKING AND CRACK CONTROL

1. Causes of cracking / Cauzele fisurării

FISURI PRODUSE DE SOLICITĂRI

1. Causes of cracking / Cauzele fisurării

FISURI CU CARACTER ÎNTÂMPLĂTOR

(Prof. Clipii)

5

1. Causes of cracking / Cauzele fisurării

CRACKS APPEARED BEFORE T	Тір			
Phenomena due to fresh	Plastic shrinkage	Intrinsic		
concrete behaviour	e behaviour Plastic settlement			
Phenomena due to execution	Movement of the scaffoldings and/or	Extrinsic		
process	formworks	Extrinsic		
Thermal effects	Early frost	Extrinsic		
CRACKS APPEARED AFTER TH	E CONCRETE HARDENING			
	Contractile aggregates	Intrinsic		
Physical phenomena	Shrinkage	Intrinsic		
	Microcracking due to use	Extrinsic		
Chamical reactions	Reinforcement corrosion	Intrinsic		
	Alkali – aggregate reactions	Intrinsic		
	Freeze - thaw repeatedly	Extrinsic		
Thermal effects	Thermal variation of the environment	Extrinsic		
	Inner thermal variation during the hardening	Intrinsic		
	Actions with design intensity	Extrinsic		
Structural causes	Accidental overload	Extrinsic		
	Concrete creep	I & E		

(Prof. Clipii)

6

Course notes

1. CAUSES OF CRACKING

2. GENERAL CONSIDERATIONS ABOUT CRACK CONTROL

3. CRACK CONTROL BY CALCULATION

4. CRACK CONTROL WITHOUT CALCULATION

5. MINIMUM REINFORCEMENT AREAS

Cracking process:Phase $1 \rightarrow$ formation of cracksPhase $2 \rightarrow$ opening of cracks

<u>Crack width</u> is a function of the number of cracks per unit length of the element, so <u>depends on the distance between the cracks</u>.

The need for crack control

- Appearance and proper functioning of the elements
- Water and gas tightness
- Corrosion protection

\Rightarrow Exigencies/Conditions that define acceptable limits for crack width

Crack width depends on:

- reinforcing coefficient
- rebar diameter and bond properties
- magnitude of the reinforcement stress
- load character: static or dynamic
- bar spacing
- concrete cover
- concrete quality

Checking of crack width is done in the 2nd stage (service stage), taking into account the resulting stresses form quasi-permanent combination of actions!

$$G + \psi_2 Q_k$$

 ψ_2 - reversible SLS, long term effects

Table A1.1 - Recommended values of	<i>w</i> factors for buildings
------------------------------------	--------------------------------

Action	Ψ	₩ 1	ψ_2	
Imposed loads in buildings, category (see				
EN 1991-1-1)				
Category A : domestic, residential areas	0,7	0,5	0,3	
Category B : office areas	0,7	0,5	0,3	
Category C : congregation areas	0,7	0,7	0,6	
Category D : shopping areas	0,7	0,7	0,6	
Category E : storage areas	1,0	0,9	0,8	
Category F : traffic area,				
vehicle weight ≤ 30 kN	0,7	0,7	0,6	
Category G : traffic area,				
30 kN $<$ vehicle weight ≤ 160 kN	0,7	0,5	0,3	
Category H : roofs	0	0	0	
Snow loads on buildings (see EN 1991-1-3)*				
Finland, Iceland, Norway, Sweden	0,70	0,50	0,20	
Remainder of CEN Member States, for sites	0,70	0,50	0,20	
located at altitude H > 1000 m a.s.l.				
Remainder of CEN Member States, for sites	0,50	0,20	0	
located at altitude H ≤ 1000 m a.s.l.				
Wind loads on buildings (see EN 1991-1-4)	0,6	0,2	0	
Temperature (non-fire) in buildings (see EN	0,6	0,5	0	
1991-1-5)				
NOTE The ψ values may be set by the National annex.				

* For countries not mentioned below, see relevant local conditions.

EN 1990:2002

Tabelul 7.1 Valori recomandate pentru factorii de grupare (combinare) a acțiunilor variabile la clădiri și structuri

Acțiunea		Factori de grupare		
		ψ_1	ψ_2	
Acțiuni din exploatare provenind din				
funcțiunea clădirii				
- Rezidentială	0,7	0,5	0,3	
- Birouri	0,7	0,5	0,3	
- Întrunire/Adunare	0,7	0,7	0,6	
- Spații comerciale	0,7	0,7	0,6	
- Spații de depozitare	1,0	0,9	0,8	
- Acoperişuri	0,7	0	0	
Acțiuni din trafic				
- Greutatea vehiculelor <30kN	0,7	0,7	0,6	
- Greutatea vehiculelor 30 ÷ 160kN	0,7	0,5	0,3	
Acțiuni din zăpadă	0,7	0,5	0,4	
Acțiuni din vânt	0,7	0,2	0	
Acțiuni din variații de temperatură	0,6	0,5	0	

unde semnificațiile simbolurilor sunt următoarele:

 ψ_0 – Factor pentru valoarea de grupare a acțiunii variabile

 ψ_1 – Factor pentru valoarea frecventă a acțiunii variabile

 ψ_2 – Factor pentru valoarea cvasipermanentă a acțiunii variabile.

(CR 0-2012)

The limit value for crack width w_{max} is determined according to the function and nature of the structure.

In the absence of specific requirements, the durability and proper appearance of the elements will be ensured.

Table 7.1N Recommended values of w_{max} (mm)

Exposure Class	Reinforced members and prestressed members with unbonded tendons	Prestressed members with bonded tendons		
	Quasi-permanent load combination	Frequent load combination		
X0, XC1	0,4 ¹	0,2		
XC2, XC3, XC4		0,2²		
XD1, XD2, XS1, XS2, XS3	0,3	Decompression		
 Note 1: For X0, XC1 exposure classes, crack width has no influence on durability and this limit is set to guarantee acceptable appearance. In the absence of appearance conditions this limit may be relaxed. Note 2: For these exposure classes, in addition, decompression should be checked under the quasi-permanent combination of loads. 				

Dr.ing. Nagy-György T. ©

(EN 1992-1-1:2004)

Crack control:

1) calculation of crack width and comparison with recommended values

$$w_k \leq w_{max}$$

2) limitation of bars diameter or the distance between them.

Whichever is the control procedure and the reinforcement quantity resulted from ULS, a minimum amount of bonded reinforcement is required to control cracking in areas where tension is expected.

Course notes

1. CAUSES OF CRACKING

2. GENERAL CONSIDERATIONS ABOUT CRACK CONTROL

3. CRACK CONTROL BY CALCULATION

4. CRACK CONTROL WITHOUT CALCULATION

5. MINIMUM REINFORCEMENT AREAS

Reinforced Concrete II. / Beton Armat II.

3. Crack control by calculation / Controlul fisurării prin calcule

Distance between the cracks

Crack width (w_k) is a function of number of cracks per unit length of the element, so <u>depends on the distance between the cracks</u> $(s_{r,max})$.

15

Distance between the cracks

Distance between the cracks

Distance between the cracks

Distance between the cracks

Distance between the cracks

Dr.ing. Nagy-György T. ©

Faculty of Civil Engineering

Distance between the cracks

Faculty of Civil Engineering

Distance between the cracks

Distance between the cracks

Distance between the cracks

After the C₁ crack formed, reinforcement takes all the axial force **→** force transfer from reinforcement

 \rightarrow A new crack is possible to appear in the section where the tensile force in concrete becomes equal

 $s_{r.max}$ - maximum crack spacing

Dr.ing. Nagy-György T. ©

Faculty of Civil Engineering

Distance between the cracks

$$F_b = F_{c,cr}$$

 $us_{r,max}f_{bm} = A_c f_{ctm}$

where $u = \pi \phi$ - rebar perimeter

$$\rho = \frac{A_s}{A_c} \implies A_c = \frac{A_s}{\rho} = \frac{\pi \phi^2}{4\rho} \implies s_{r,max} = 0.25 \frac{f_{ctm} \phi}{f_{bm} \rho}$$

Diameter $\phi \searrow$ Reinforcing coefficient $\rho \nearrow$ bond \nearrow - On the length $s_{r,max}$ there is transfer of the force $F_{c,cr}$ from reinforcement to concrete by the bond force F_b

- Real distribution of bond stress is non-linear, but for simplification of calculus can be adopted a rectangular distribution

$$\Rightarrow \qquad s_{r,max} = \frac{A_c f_{ctm}}{u f_{bm}}$$

 $\Rightarrow s_{r,max} \searrow \Rightarrow w_k \searrow$

(Prof. Clipii)

 $w_k = (\varepsilon_{sm} - \varepsilon_{cm})s_{r.max}$

In EC2: crack spacing depends on the distance between bars

a) Distance between bars $\leq 5(c+\phi/2)$ – usual situation

$$s_{r,max} = 3, 4c + 0, 425k_1k_2\frac{\phi}{\rho_{p,eff}}$$

where

φ

С

- bar diameter

- where a mixture of bar diameters is used in a section, an equivalent diameter: $\phi_{ech} = \sum n \phi^2 / \sum n \phi$
- concrete cover to the longitudinal reinforcement
- coefficient which takes account of the bond properties of the reinforcement:
 - = 0,8 for high bond bars
 - = 1,6 for plain bars
- k_2 coefficient which takes account of the distribution of strain:
 - = 0,5 for bending
 - = 1,0 for pure tension

 $= (\varepsilon_1 + \varepsilon_2)/2\varepsilon_1$ for cases of eccentric tension, in which ε_1 is the greater and ε_2 the lesser tensile strain at the boundaries of the section considered, assessed on the basis of a cracked section

 $\begin{aligned} \rho_{p,eff} &= A_s / A_{c,eff} \\ A_{c,eff} & \text{effective area of concrete in tension surrounding the reinforcement of depth } h_{c,ef} \\ h_{c,ef} &= \min[2,5(h-d);(h-x)/3;h/2] \end{aligned}$

Reinforced Concrete II. / Beton Armat II.

3. Crack control by calculation / Controlul fisurării prin calcule

Distance between the cracks

In EC2: crack spacing depends on the distance between bars

a) Distance between bars $\leq 5(c+\phi/2)$ – usual situation

$$s_{r,max} = 3, 4c + 0, 425k_1k_2 \frac{\phi}{\rho_{p,eff}}$$

Distance between the cracks

In EC2: crack spacing depends on the distance between bars

b) Distance between bars > $5(c + \phi/2)$ – slabs, massive elements

$$s_{r,max} = 1, 3(h - x)$$

Crack width calculation

Crack width calculation

Capacity at cracking is given by the contribution of both materials :

$$N_{cr} = A_c f_{ctm} + A_s \sigma_{s,cr}$$

Dr.ing. Nagy-György T. ©

Reinforced Concrete II. / Beton Armat II.

3. Crack control by calculation / Controlul fisurării prin calcule

Crack width calculation

At the level of reinforcement, concrete and steel have identical strain

$$\varepsilon_s = \varepsilon_c \rightarrow \sigma_s / E_s = \sigma_c / E_c \rightarrow \sigma_s = \sigma_c (E_s / E_c) \rightarrow \sigma_s = \alpha_e \sigma_c$$

 $\alpha_e = E_s/E_c$ coefficient of equivalence

$$\rightarrow \qquad N_{cr} = A_c f_{ctm} + A_s \sigma_{s,cr} = A_c f_{ctm} \left(1 + \alpha_e \frac{A_s}{A_c} \right) = A_c f_{ctm} (1 + \rho \alpha_e)$$

Just before cracking

$$\varepsilon_{s,cr} = \varepsilon_{c,cr} = \frac{N_{cr}}{E_s A_s} = \frac{A_c f_{ctm} (1 + \rho \alpha_e)}{E_s A_s}$$

Crack width is determined by the increasing (Δ) of the strain in reinforcement from

Formula in EC2

$$w_k = s_{r,max}(\varepsilon_{sm} - \varepsilon_{cm})$$

Crack width calculation

where

- ε_{sm} the mean strain in the reinforcement under the relevant combination of loads, including the effect of imposed deformations and taking into account the effects of tension stiffening.
- ε_{cm} the mean strain in the concrete between cracks

 $\varepsilon_{sm} - \varepsilon_{cm}$ may be calculated from the expression

$$\varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_s - k_t \frac{f_{ct,eff}}{\rho_{p,eff}} (1 + \alpha_e \rho_{p,eff})}{E_s} \ge 0.6 \frac{\sigma_s}{E_s}$$

$$\begin{split} \sigma_s & - \text{stress in the tension reinforcement assuming a cracked section} \\ \sigma_s &= \alpha_e \frac{M}{I_{II}} (d-x) & \text{Navier's formula applied for bent RC section} \\ k_t & - \text{factor dependent on the duration of the load} \\ &= 0,6 \text{ for short term loading} \\ &= 0,4 \text{ for long term loading} \\ \rho_{p,eff} &= A_s / A_{c,eff} \end{split}$$

 $f_{ct,eff}$ for crack width calculation and contribution of tensile concrete $f_{ct,eff} = f_{ctm}$

Course notes

1. CAUSES OF CRACKING

2. GENERAL CONSIDERATIONS ABOUT CRACK CONTROL

3. CRACK CONTROL BY CALCULATION

4. CRACK CONTROL WITHOUT CALCULATION

5. MINIMUM REINFORCEMENT AREAS

CONTROL OF CRACKING WITHOUT DIRECT CALCULATION

For reinforced concrete slabs subjected to bending without significant axial tension, specific measures to control cracking are not necessary where the overall depth does not exceed 200 mm and the detailing provisions have been applied.

Where the minimum amount of reinforcement is provided, crack widths are unlikely to be excessive if:

- for cracking caused dominantly by restraint, the bar sizes given in Table 7.2N are not exceeded where the steel stress (σ_s) is the value obtained immediately after cracking (may be assumed f_{yk}).

- for cracks caused mainly by loading, either the provisions of Table 7.2N or the provisions of Table 7.3N are complied with. The steel stress (σ_s) should be calculated on the basis of a cracked section under the quasi permanent combination of actions.

Table 7.2N Maximum bar diameters ϕ_{s}^{*} for crack control¹

Steel stress ²	Maximum bar size [mm]			
[MPa]	w _k = 0,4 mm	w _k = 0,3 mm	w _k = 0,2 mm	
160	40	32	25	
200	32	25	16	
240	20	16	12	
280	16	12	8	
320	12	10	6	
360	10	8	5	
400	8	6	4	
450	6	5	-	

Notes: 1. The values in the table are based on the following assumptions:

c = 25mm; $f_{ct,eff} = 2,9$ MPa; $h_{cr} = 0,5$; (h-d) = 0,1h; $k_1 = 0,8$; $k_2 = 0,5$; $k_c = 0,4$; k = 1,0; $k_t = 0,4$ and k' = 1,0

2. Under the relevant combinations of actions

Table 7.3N Maximum bar spacing for crack control¹

Steel stress ²	Maximum bar spacing [mm]			
[MPa]	w _k =0,4 mm	w _k =0,3 mm	w _k =0,2 mm	
160	300	300	200	
200	300	250	150	
240	250	200	100	
280	200	150	50	
320	150	100	-	
360	100	50	-	

Stool stross		Aaximum bar size		Maximum bar spacing			
		(mm) for w_k			(mm) for w_k		
σ_s (IVIPa)	0,4 mm	0,3 mm	0,2 mm	0,4 mm	0,3 mm	0,2 mm	
160	40	32	25	300	300	200	
200	32	25	16	300	250	150	
240	20	16	12	250	200	100	
280	16	12	8	200	150	50	
320	12	10	6	150	100	-	
360	10	8	5	100	50	-	
400	8	6	4	-	-	-	
450	6	5	_	-	-	-	

Bending (at least part of section in compression):

$$\phi_{\rm s} = \phi^*_{\rm s} (f_{\rm ct, eff}/2, 9) \frac{k_{\rm c} h_{\rm cr}}{2 (h-d)}$$

Tension (uniform axial tension)

$$\phi_{\rm s} = \phi^*_{\rm s}(f_{\rm ct,eff}/2,9)h_{\rm cr}/(8(h-d))$$

where:

- $\phi_{\rm s}$ is the adjusted maximum bar diameter
- ϕ_{s}^{*} is the maximum bar size given in the Table 7.2N
- *h* is the overall depth of the section
- h_{cr} is the depth of the tensile zone immediately prior to cracking, considering the characteristic values of prestress and axial forces under the quasi-permanent combination of actions
- d is the effective depth to the centroid of the outer layer of reinforcement

Dr.ing. Nagy-György T. ©

(7.6N)

(7.7N)

Course notes

1. CAUSES OF CRACKING

2. GENERAL CONSIDERATIONS ABOUT CRACK CONTROL

3. CRACK CONTROL BY CALCULATION

4. CRACK CONTROL WITHOUT CALCULATION

5. MINIMUM REINFORCEMENT AREAS

5. Minimum reinforcement areas / Arii de armături minime

If crack control is required, a minimum amount of bonded reinforcement is required to control cracking in areas where tension is expected.

→ this amount may be estimated from equilibrium between the <u>tensile force in concrete just</u> <u>before cracking</u> and <u>the tensile force in reinforcement</u> at yielding (or at a lower stress if necessary to limit the crack width). $\sigma_{es} \leq f_{c}$

$$A_s f_{yk} \ge A_c f_{ctm}$$

minimum reinforcement should be determined for the individual parts of the section (webs, flanges)

$$A_{s,min} = k_c k f_{ct,ef} A_{ct} / \sigma_s$$

 A_{ct} is the area of concrete within tensile zone. The tensile zone is that part of the section which is calculated to be in tension just before formation of the first crack

 σ_s is the absolute value of the maximum stress permitted in the reinforcement immediately after formation of the crack. This may be taken as the yield strength of the reinforcement, f_{yk} . A lower value may, however, be needed to satisfy the crack width limits according to the maximum bar size or spacing

 $f_{ct,ef} = f_{ctm}$ mean value of the tensile strength of the concrete effective at the time when the cracks may first be expected to occur

k is the coefficient which allows for the effect of non-uniform self-equilibrating stresses

 k_c a coefficient which takes account of the stress distribution within the section immediately prior to cracking and of the change of the lever arm

5. Minimum reinforcement areas / Arii de armături minime

In the case of **high beams**, where the reinforcements resulted from bending moment are concentrated only on a small part of the height (e.g. bottom), there is an **increase in the distance between the cracks**, which leads to an **increase in the crack width**

In order to control the cracks on the side faces of the beams, additional reinforcements must be provided on the side faces inside the stirrups, uniform distributed between the main reinforcements and the neutral axis

$$A_{s,skin} \ge 0.5k_c k f_{ct,ef} A_{ct} / f_{yk}$$

Distances between suplimentary bars and their diameter could be established with tabel 7.2N

THANK YOU FOR YOUR ATTENTION !!!

Dr. NAGY-GYÖRGY Tamás Profesor

E-mail: tamas.nagy-gyorgy@upt.ro

Tel: +40 256 403 935

Web: http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm

Office: A219