

Dr. NAGY-GYÖRGY Tamás

Professor

E-mail:

tamas.nagy-gyorgy@upt.ro

Tel:

+40 256 403 935

Web:

http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm

Office:

A219

Initial data

RC beam

$$h = 600 \, mm$$

$$b = 400 \, mm$$

$$L = 1100 \ mm$$

Load

$$P_{Ed} = 400 \, kN$$

Load eccentricity

$$e_x = 50 mm$$

$$e_y = 50 mm$$

Concrete class

$$f_{ctk.0.05} = 2.00 MPa$$

Reinforcement

$$A_l \rightarrow \emptyset 20$$

$$A_w \rightarrow \emptyset 10$$

Reinforcement strength

$$f_{vk} = 500 MPa$$

Exposure class

XC3

$$f_{cd} = ?MPa$$

 $f_{ctd} = ?MPa$
 $f_{yd} = ?MPa$

$$\begin{split} c_{nom} &= c_{min} + \Delta c_{dev} \\ c_{min} &= max \left\{ c_{min,b}; c_{min,dur}; \ 10 \ mm \right\} \\ c_{min,dur} &= ? \ mm \end{split}$$

Table 4.4N: Values of minimum cover, c_{min,dur}, requirements with regard to durability for reinforcement steel in accordance with EN 10080.

Environmental Requirement for $c_{\min,dur}$ (mm)									
Structural	Exposure Class according to Table 4.1								
Class	X0	XC1	XC2/XC3	XC4	XD1/XS1	XD2/XS2	XD3/XS3		
S1	10	10	10	15	20	25	30		
S2	10	10	15	20	25	30	35		
S3	10	10	20	25	30	35	40		
S4	10	15	25	30	35	40	45		
S5	15	20	30	35	40	45	50		
S6	20	25	35	40	45	50	55		

$$f_{cd} = 20 MPa$$

 $f_{ctd} = 1.33 MPa$
 $f_{vd} = 434.8 MPa$

$$\begin{split} c_{nom} &= c_{min} + \Delta c_{dev} \\ c_{min} &= max \left\{ c_{min,b}; c_{min,dur}; \ 10 \ mm \right\} \\ c_{min,dur} &= 25 \ mm \end{split}$$

Table 4.4N: Values of minimum cover, c_{min,dur}, requirements with regard to durability for reinforcement steel in accordance with EN 10080.

Environmental Requirement for $c_{ m min,dur}$ (mm)								
Structural	Exposure Class according to Table 4.1							
Class	X0	XC1	XC2/XC3	XC4	XD1/XS1	XD2/XS2	XD3/XS3	
S1	10	10	10	15	20	25	30	
S2	10	10	15	20	25	30	35	
S3	10	10	20	25	30	35	40	
S4	10	15	25	30	35	40	45	
S5	15	20	30	35	40	45	50	
S6	20	25	35	40	45	50	55	

$$f_{cd} = 20 MPa$$

 $f_{ctd} = 1.33 MPa$

$$f_{yd} = 434.8 \, MPa$$

$$\begin{split} c_{nom} &= c_{min} + \Delta c_{dev} \\ c_{min} &= max \left\{ c_{min,b}; c_{min,dur}; \ 10 \ mm \right\} \\ c_{min,dur} &= 25 \ mm \end{split}$$

Table 4.3N: Recommended structural classification

Structural Class								
Criterion	Exposure Class according to Table 4.1							
Chterion	X0	XC1	XC2/XC3	XC4	XD1	XD2/XS1	XD3/XS2/XS3	
Design Working Life of	increase	increase	increase	increase	increase	increase	increase class	
100 years	class by 2	class by 2	class by 2	class by 2	class by 2	class by 2	by 2	
Strength Class 1)2)	≥ C30/37	≥ C30/37	≥ C35/45	≥ C40/50	≥ C40/50	≥ C40/50	≥ C45/55	
	reduce	reduce	reduce	reduce	reduce	reduce	reduce class by	
	class by 1	class by 1	class by 1	class by 1	class by 1	class by 1	1	
Member with slab	reduce	reduce	reduce	reduce	reduce	reduce	reduce class by	
geometry	class by 1	class by 1	class by 1	class by 1	class by 1	class by 1	1	
(position of reinforcement not affected by construction process)								
Special Quality	reduce	reduce	reduce	reduce	reduce	reduce	reduce class by	
Control of the concrete production ensured	class by 1	class by 1	class by 1	class by 1	class by 1	class by 1	1	

$$f_{cd} = 20 MPa$$

 $f_{ctd} = 1.33 MPa$
 $f_{vd} = 434.8 MPa$

$$\begin{split} c_{nom} &= c_{min} + \Delta c_{dev} \\ c_{min} &= max \left\{ c_{min,b}; c_{min,dur}; \ 10 \ mm \right\} \\ c_{min,dur} &= 25 \ mm \end{split}$$

Clasa	Clasa de expunere conform tabelul 4.1									
structurală	X0	XC1	XC2 / XC3	XC4	XD1/XS1	XD2 / XS2	XD3/XS3			
S1	10	10	10	15	20	25	30			
S2	10	10	15	20	25	30	35			
S3	10	10	20	25	30	35	40			
S4	10	15	25	30	35	40	45			
S5	15	20	30	35	40	45	50			
S6	20	25	35	40	45	50	55			

LONGITUDINAL REINFORCEMENT	TRANSVERSAL REINF. (stirrup)					
$c_{min} = max \left\{ c_{min,b}; c_{min,dur}; 10 mm \right\}$						
$= max \{20 mm; 25 mm; 10 mm\}$	$= max \{10 mm; 25 mm; 10 mm\}$					
$c_{min,long} = 25 \text{ mm}$	$c_{min,etr} = 25 \text{ mm}$					
$\Delta c_{dev} = 10 \ mm \ \text{(A.N.)}$	$\Delta c_{dev} = 10 \ mm$ (A.N.)					
$c_{nom,long} = 35 \ mm$	$c_{nom,etr} = 35 \ mm$					
$\Rightarrow c_{nom,etr} = c_{nom,long} - \phi_{etr} = 25 \ mm$	$\Rightarrow c_{nom,long} = c_{nom,etr} + \phi_{etr} = 45 \ mm$					
$c_{nom,etr} = 22mm < c_{nom,etr}^{nec} = 35 mm$	$c_{nom,long} = 45 \text{ mm} > c_{nom,long}^{\text{nec}} = 35 \text{ mm}$					
$\Rightarrow c_{nom,long} = 45 \ mm \ \ \text{OK!!!}$						

$$f_{cd} = 20 MPa$$

 $f_{ctd} = 1.33 MPa$

$$f_{yd} = 434.8 \, MPa$$

$$c_{nom,l} = 45 \ mm$$

Design values of the loads

$$V_{Ed} = ? kN$$

$$M_{Ed} = ? kNm$$

$$T_{Ed} = ?kN$$

Design values of the loads

$$V_{Ed} = 400kN$$

$$M_{Ed} = 420 \ kNm$$

$$T_{Ed} = 60 \ kN$$

$$t_{ef} = \frac{A}{u} \ge t_{ef,min} = 2t_s$$

$$t_s = ? mm$$

 $t_{ef,min} = 2t_s = ? mm$

$$A = ? mm^2$$
$$u = ? mm$$

$$t_{ef} = \frac{A}{u} = ?mm$$

$$t_{ef} = \frac{A}{u} \ge t_{ef,min} = 2t_s$$

$$t_s = 55 mm$$

$$t_{ef,min} = 2t_s = 110 mm$$

$$A = 240000 \ mm^2$$

 $u = 2000 \ mm$

$$t_{ef} = \frac{A}{u} = 120 \ mm$$

$$t_{ef} = \frac{A}{u} \ge t_{ef,min} = 2t_s$$

$$t_s = 55 mm$$

$$t_{ef,min} = 2t_s = 110 mm$$

$$A = 240000 \ mm^2$$

 $u = 2000 \ mm$

$$t_{ef} = \frac{A}{u} = 120 \ mm$$

$$b_k = ? mm$$

 $h_k = ? mm$
 $u_k = ? mm$
 $A_k = ? mm^2$

$$A = b_w h$$

$$u = 2(b_w + h)$$

$$A_k = b_k h_k$$
$$u_k = 2(b_k + h_k)$$

$$t_{ef} = \frac{A}{u} \ge t_{ef,min} = 2t_s$$

$$t_s = 55 mm$$

$$t_{ef,min} = 2t_s = 110 mm$$

$$A = 240000 \ mm^2$$

 $u = 2000 \ mm$

$$t_{ef} = \frac{A}{u} = 120 \ mm$$

$$b_k = 280 \ mm$$

 $h_k = 480 \ mm$
 $u_k = 1520 \ mm$
 $A_k = 134400 \ mm^2$

$$A = b_w h$$
$$u = 2(b_w + h)$$

$$A_k = b_k h_k$$
$$u_k = 2(b_k + h_k)$$

Design for bending

$$\mu = \frac{M_{Ed}}{bd^2 f_{cd}} = ? < \mu_{lim} = 0.8 \xi_{lim} (1 - 0.4 \xi_{lim}) = ?$$

$$\xi_{lim} = \frac{3.5}{3.5 + 1000 f_{vd}/E_s} = ?$$

$$d = h - d_s = ? mm$$

$$\omega_S = 1 - \sqrt{1 - 2\mu} = ?$$

$$A_{sl,nec} = \omega_s bd \frac{f_{cd}}{f_{vd}} = ? mm^2$$

$$A_{sl,eff} = ? \phi 20 = ? mm^2$$

$$b_{nec} = ? mm \stackrel{?}{<} b_{eff} = 400 mm$$

Design for bending

$$\mu = \frac{M_{Ed}}{bd^2 f_{cd}} = 0.177 < \mu_{lim} = 0.8 \xi_{lim} (1 - 0.4 \xi_{lim}) = 0.372$$

$$\xi_{lim} = \frac{3.5}{3.5 + 1000 f_{vd} / E_s} = 0.617$$

$$d = h - d_s = 545 mm$$

$$\omega_S = 1 - \sqrt{1 - 2\mu} = 0.196$$

$$A_{sl,nec} = \omega_s bd \frac{f_{cd}}{f_{vd}} = 1965 \ mm^2$$

$$A_{sl,eff} = 7\phi 20 = 2199 \, mm^2$$

$$b_{nec} = 360 \ mm < b_{eff} = 400 \ mm$$

$$V_{Rd,c} = \max \begin{pmatrix} \left[C_{Rd,c} k (100\rho_l f_{ck})^{1/3} + k_1 \sigma_{cp} \right] b_w d \\ (\nu_{min} + k_1 \sigma_{cp}) b_w d \end{pmatrix} = ?$$

$$C_{Rd,c} = \frac{0.18}{\gamma_c} = ?$$

$$k = 1 + \sqrt{\frac{200}{d}} = ? \le 2$$

$$\rho_l = \frac{A_{sl}}{b_w d} = ? \le 0.02$$

$$v_{min} = 0.035k^{3/2} \cdot f_{ck}^{1/2} =$$
?

$$V_{Rd,c} = \max \begin{pmatrix} \left[C_{Rd,c} k (100 \rho_l f_{ck})^{1/3} + k_1 \sigma_{cp} \right] b_w d \\ (\nu_{min} + k_1 \sigma_{cp}) b_w d \end{pmatrix} = \max \begin{pmatrix} 130.9 \ kN \\ 85.0 \ kN \end{pmatrix} = 130.9 kN$$

$$C_{Rd,c} = 0.18/\gamma_c = 0.12$$

$$k = 1 + \sqrt{\frac{200}{d}} \le 2 = 1.61$$

$$\rho_l = \frac{A_{sl}}{b_w d} = 0.010 \le 0.02$$

$$v_{min} = 0.035k^{3/2} \cdot f_{ck}^{1/2} = 0.390$$

$$V_{Rd,c}=130.9kN$$

<

$$V_{Ed} = 400 \ kN$$

 \rightarrow :

$$V_{Rd,c} = 130.9kN$$
 < $V_{Ed} = 400 kN$

→ shear reinforcement is required

$$V_{Rd,c} = 130.9kN$$
 < $V_{Ed} = 400 kN$

→ shear reinforcement is required

→ Computation of

$$V_{Rd,max} = \alpha_{cw} b_w \cdot z \cdot v_1 \cdot f_{cd} sin\theta cos\theta = ?$$

$$\alpha_{cw} = 1$$
 for non-prestressed structures

$$v_1 = v = 0.6 \left(1 - \frac{f_{ck}}{250} \right) = ?$$
 $\theta = 45^{\circ}$

$$V_{Rd,max} = \alpha_{cw} b_w \cdot z \cdot v_1 \cdot f_{cd} sin\theta cos\theta = 1035.9 \ kN$$

$$\alpha_{cw} = 1$$
 for non-prestressed structures

$$v_1 = v = 0.6 \left(1 - \frac{f_{ck}}{250} \right) = 0.528$$
 $\theta = 45^{\circ}$

$$\theta = 45^{\circ}$$

$$V_{Rd,max} = 1035.9 \ kN$$
 > $V_{Ed} = 400 \ kN$

$$V_{Rd,max} = 1035.9 \ kN$$
 > $V_{Ed} = 400 \ kN$

→ cross section could be reinforced for shear

Torsional cracking moments

TORSIONAL CRACKING MOMENTS

$$T_{Rd,c} = 2A_k t_{ef} f_{ctd} = ? kNm$$

with
$$\tau_t = f_{ctd}$$

Torsional cracking moments

TORSIONAL CRACKING MOMENTS

$$T_{Rd,c} = 2A_k t_{ef} f_{ctd} = 43.0 \ kNm$$

with
$$\tau_t = f_{ctd}$$

Torsional cracking moments

TORSIONAL CRACKING MOMENTS

$$T_{Rd,c} = 2A_k t_{ef} f_{ctd} = 43.0 \text{ kNm} \quad < \quad T_{Ed} = 60 \text{ kNm}$$

Torsional cracking moments

TORSIONAL CRACKING MOMENTS

$$T_{Rd,c} = 2A_k t_{ef} f_{ctd} = 43.0 \ kNm$$
 < $T_{Ed} = 60 \ kNm$

→ reinforcement for torsion is required

Torsional cracking moments

FOR APPROXIMATELY RECTANGULAR SOLID SECTIONS

Calculation for combined \leftarrow **NO** shear and torsion is required

$$\frac{T_{Ed}}{T_{Rd,c}} + \frac{V_{Ed}}{V_{Rd,c}} \le 1$$

YES → no reinforcement calculation required

Torsional cracking moments

FOR APPROXIMATELY RECTANGULAR SOLID SECTIONS

Calculation for combined ← NO shear and torsion is required

$$\frac{T_{Ed}}{T_{Rd,c}} + \frac{V_{Ed}}{V_{Rd,c}} \le 1$$

$$\frac{60}{43.0} + \frac{400}{130.9} \le$$
?

Torsional cracking moments

FOR APPROXIMATELY RECTANGULAR SOLID SECTIONS

Calculation for combined ← NO shear and torsion is required

$$\frac{T_{Ed}}{T_{Rd,c}} + \frac{V_{Ed}}{V_{Rd,c}} \le 1$$
 YES $ightarrow$ no reinforcement calculation required

$$\frac{60}{43.0} + \frac{400}{130.9} \le 4.45 > 1$$

Maximum resistance of concrete struts

CAPACITY OF COMPRESSED STRUTS

$$T_{Rd,max} = 2\alpha_{cw}\nu f_{cd}A_k t_{ef}sin\theta cos\theta = ? kNm$$

 $\alpha_{cw} = 1$ for non-prestressed structures

$$v_1 = v = 0.6 \left(1 - \frac{f_{ck}}{250} \right) = ?$$
 $\theta = 45^{\circ}$

Maximum resistance of concrete struts

CAPACITY OF COMPRESSED STRUTS

$$T_{Rd,max} = 2\alpha_{cw}\nu f_{cd}A_k t_{ef}sin\theta cos\theta = 170.3 \ kNm$$

 $\alpha_{cw} = 1$ for non-prestressed structures

$$v_1 = v = 0.6 \left(1 - \frac{f_{ck}}{250} \right) = 0.528$$
 $\theta = 45^{\circ}$

Maximum resistance of concrete struts

CAPACITY OF COMPRESSED STRUTS

$$T_{Rd,max} = 2\alpha_{cw}\nu f_{cd}A_k t_{ef}sin\theta cos\theta = 170.3~kNm$$
 > $T_{Ed} = 60~kNm$

Maximum resistance of concrete struts

CAPACITY OF COMPRESSED STRUTS

$$T_{Rd,max} = 2\alpha_{cw}\nu f_{cd}A_k t_{ef}sin\theta cos\theta = 170.3 \ kNm$$
 > $T_{Ed} = 60 \ kNm$

> cross section could be reinforced for torsion

THE MAXIMUM RESISTANCE OF A MEMBER SUBJECTED TO TORSION AND SHEAR IS LIMITED BY THE CAPACITY OF THE CONCRETE STRUTS

reconsider of
$$\leftarrow$$
 NO the cross section

$$\frac{T_{Ed}}{T_{Rd,max}} + \frac{V_{Ed}}{V_{Rd,max}} \le 1$$

Notes about $V_{Rd,max}$

- in solid cross sections the full width of the web may be used
- for non-solid sections replace b_w by $t_{\it ef}$

Design for torsion

Maximum resistance of concrete struts

THE MAXIMUM RESISTANCE OF A MEMBER SUBJECTED TO TORSION AND SHEAR IS LIMITED BY THE CAPACITY OF THE CONCRETE STRUTS

$$\begin{array}{c} \text{reconsider of} \\ \text{the cross section} \end{array} \leftarrow \mathbf{NO}$$

$$\frac{T_{Ed}}{T_{Rd,max}} + \frac{V_{Ed}}{V_{Rd,max}} \le 1$$

$$\frac{60}{170.3} + \frac{400}{1035.9} \le ?$$

37

THE MAXIMUM RESISTANCE OF A MEMBER SUBJECTED TO TORSION AND SHEAR IS LIMITED BY THE CAPACITY OF THE CONCRETE STRUTS

reconsider of
$$\leftarrow$$
 NO the cross section

$$\frac{T_{Ed}}{T_{Rd,max}} + \frac{V_{Ed}}{V_{Rd,max}} \le 1$$

YES → next step = reinforcement calculation

$$\frac{60}{170.3} + \frac{400}{1035.9} \le 0.738 < 1$$

> cross section could be reinforced for combined shear and torsion

Design of shear reinforcement

$$V_{Rd,S} = V_{Ed}$$

With
$$\theta = 45^{\circ}$$
 and $\alpha = 90^{\circ}$

$$\left(\frac{A_{sw}}{s}\right)_{nec} = \frac{V_{Ed}}{z \cdot f_{ywd} \cdot ctg\theta} = ?$$

Design of shear reinforcement

$$V_{Rd,s} = V_{Ed}$$

With
$$\theta = 45^{\circ}$$
 and $\alpha = 90^{\circ}$

$$\left(\frac{A_{sw}}{s}\right)_{nec} = \frac{V_{Ed}}{z \cdot f_{ywd} \cdot ctg\theta} = 1.876$$

$$T_{Rd,sw} = T_{Ed}$$

With
$$\theta = 45^{\circ}$$

$$\left(\frac{A_{sw}}{s}\right)_{nec} = \frac{T_{Ed}}{2A_k f_{ywd}} \ tan\theta = ?$$

$$T_{Rd,sw} = T_{Ed}$$

With
$$\theta = 45^{\circ}$$

$$\left(\frac{A_{sw}}{s}\right)_{nec} = \frac{T_{Ed}}{2A_k f_{ywd}} \ tan\theta = 0.513$$

Required area of the longitudinal bars is obtained from

$$T_{Rd,sl} = T_{Ed}$$

With
$$\theta = 45^{\circ}$$

$$A_{sl} = \frac{T_{Ed}u_k}{2A_k f_{vd}} \cot\theta = ? mm^2$$

 $? \phi 6$ **Proposals** $? \phi 8$ or

> ? ϕ 10 or

> ? ϕ 12 or

? ϕ 14 or

Required area of the longitudinal bars is obtained from

$$T_{Rd,sl} = T_{Ed}$$

With
$$\theta = 45^{\circ}$$

$$A_{sl} = \frac{T_{Ed}u_k}{2A_k f_{vd}} \cot\theta = 780 \ mm^2$$

Proposals	$16 \phi 8 = 804 \ mm^2$
or	$10 \phi 10 = 785 mm^2$
or	$7 \phi 12 = 792 mm^2$
or	$6 \phi 14 = 924 mm^2$
or	$4 \phi 16 = 804 mm^2$

Structural elements are subjected to $M_{Ed} + V_{Ed} + T_{Ed}$

→ should take account of superposition of the effects of all the effects

M_{Ed}	V_{Ed}	T_{Ed}	Σ
A_{s}	1	A_{sl}	$A_s + A_{sl}$
_	$(A_{sw}/s)_V$	$(A_{sw}/s)_T$	$(A_{sw}/s)_{V+T}$

$$\Rightarrow A_s + A_{sl} = 7\phi 20 + 6\phi 14$$

$$\Rightarrow \left(\frac{A_{sw}}{s}\right)_{V+T} = 1.876 + 0.513 = 2.389 \frac{mm^2}{mm}$$

$$\Rightarrow \left(\frac{A_{sw}}{s}\right)_{V+T} = 1.876 + 0.513 = 2.389$$

For
$$n = 2$$
 $A_{sw} = 2 \cdot A_{\phi?} = ? mm^2$ \Rightarrow $s_{nec} = ? mm$

$$\Rightarrow \qquad s_{eff} = ? mm < s_{min} = 80 mm$$

$$\Rightarrow \left(\frac{A_{SW}}{S}\right)_{V+T} = 1.876 + 0.513 = 2.389$$

For
$$n = 2$$
 $A_{sw} = 2 \cdot A_{\phi 10} = 157 \ mm^2$

$$\rightarrow$$
 $s_{nec} = 65.8 \, mm$

$$\Rightarrow \qquad s_{eff} = 60 \ mm < s_{min} = 80 \ mm$$

$$\Rightarrow \left(\frac{A_{sw}}{s}\right)_{V+T} = 1.876 + 0.513 = 2.389$$

For
$$n = 4$$
 $A_{sw} = 4 \cdot A_{\phi 10} = ? mm^2$

$$\rightarrow$$
 $s_{nec} = ? mm$

$$> s_{eff} = ? mm$$
 $> s_{min} = 80 mm$ $< s_{max} = \min(0.75d, u/8, b) = 400 mm$

$$\Rightarrow \left(\frac{A_{SW}}{S}\right)_{V+T} = 1.876 + 0.513 = 2.389$$

For
$$n = 4$$
 $A_{sw} = 4 \cdot A_{\phi 10} = 314 \ mm^2$

$$\Rightarrow s_{nec} = 131.5 \ mm$$

$$\Rightarrow s_{eff} = 130 \ mm > s_{min} = 80 \ mm$$

$$< s_{max} = \min(0.75d, u/8, b) = 400 \ mm$$

THANK YOU FOR YOUR ATTENTION!

Dr. NAGY-GYÖRGY Tamás

Professor

E-mail: tamas.nagy-gyorgy@upt.ro

Tel: +40 256 403 935

Web: http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm

Office: A219