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• Analysis and design of structures subjected to blast loads require:
• understanding of blast phenomena
• understanding of the dynamic response of various structural 

elements.
• Complexity in analyzing the response:

• uncertainties of blast load calculations
• time-dependent deformations
• effect of high strain rates
• non-linear inelastic material behavior

• To simplify the analysis, a number of assumptions related to the response 
of structures and the loads has been proposed and widely accepted:
• Elastic SDOF Systems
• Elasto-Plastic SDOF Systems

• Blast loading effects:
• Global structural behavior 
• Localised structural behavior
• Pressure-Impulse (P-I) Diagrams

Structural response to blast loading



Elastic SDOF systems

• The simplest discretization of transient problems is by means of the 
SDOF approach

• A SDOF is a system with only one type of motion (position at any instant 
can be defined using a single coordinate)

• The actual structure can be replaced by an equivalent system of one 
concentrated mass and one weightless spring representing the  
resistance of the structure against deformation.

• The blast load can be idealized as a triangular pulse

SDOF system

Blast loading
u(t)



• Consider a SDOF and the state of equilibrium shown in figure
• Equation of motion as follows:

:
Formulation of the problem
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• The effects of damping are generally small and are often neglected



• The force equals zero and there is no damping, c=0
• Motion will occur if the system is given an initial disturbance - initial 

displacement u0 or initial velocity 0 (e.g. produced by an impulse) - or a 
combination of the two

• Equation of motion as follows:

• Solution to equation of motion is:

- Free Vibration 
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 = natural circular frequency1 2

• Constants C1, C2 depend upon initial conditions, ,

• This results in: C2=u(0);    C1=
௨ሶ ଴
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• The solution for zero external load is therefore:
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Since one complete cycle occurs for 
each angular increment ߱ݐ =      , ߨ2
T and f are given by:



• The motion is the result of the force F(t), and there is no damping, c=0
• The system may be at rest (displacement and velocity are zero at t=0), 

or with an initial disturbance  (initial displacement u0 or initial velocity 0, 
or a combination of the two). 

• The simplest case corresponds to a force F(t) with a constant 
magnitude (suddenly applied and remains constant indefinitely) 

• Equation of motion as follows:

• Solution to equation of motion is:

- Forced Vibration 
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• Constants C1, C2 depend upon initial conditions, ,

• This results in: C2=
ி(௧)

௞
;    C1=

• The solution is:
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Undamped SDOF, suddenly applied constant force

• The solution is similar to that of an undamped SDOF, free vibration. The only 

difference is that the axis is shifted with 
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• The maximum displacement 
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is twice the displacement for a statically 

applied force 

• If a constant force is suddenly applied to a linear elastic system, the resulting 
displacement is twice that for the same force applied statically. 

• Dynamic load factor DLF = ratio of the dynamic deflection at any time to the 
deflection that would result from the static application of the load F.
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• Let us consider a system at rest, subjected to a constant force F, with 
the duration td.  

• The mass m begins to move with acceleration
ி

௠
• If td is short enough, acceleration is constant, and the velocity at time td

is:

i is the applied impulse (equal to the area below the load-time curve)

• Let us consider a general load function. For a time , the area below 
the curve is the pure impulse. This impulse causes an increment of the 

velocity at time equal to 
ிௗఛ
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- this velocity can be considered as an 

initial velocity imparted to the system at rest. The displacement at time t 
due to this impulse (load applied during ) is (the initial displacement 
u(0)=0):

- Various load-time functions
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• The total displacement is therefore the sum of the effects of all 
elements of impulse between zero and t. Thus:

• The static deflection ust due to F may be expressed as:

• If the effects of initial displacement and velocity are also included, the 
general expression for the response of undamped, liner elastic SDOF 
system subjected to any load function and/or initial condition is: 
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• In this case, a constant load is sudenly applied within with a limited 
duration, td

• Up to time td, the following equations apply:

• For the response after td, we consider as initial condition the velocity at 
td. Replacing t by t-td , displacement and velocity 0 and 0 by td and 

 ݀ݐ
and considering =0, we obtain:

- Rectangular–pulse load
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• It is more convenient to normalize the time parameter
• If td is small (approaches zero), the maximum deflection (and stress) 

tends to zero
• For td/T>0.5, the maximum response is the same as for infinite 

duration load
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• In this case, the system is at rest and is subjected to a force F which 
has the value F1 - suddenly applied and then decreasing linearly to zero 
at td

• For t<=td, 0=0, 0 =0, 1
௧
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and the following equations 

apply:

• For the response after td, we obtain:

• Substituting in general equation and replacing t by t-td, we obtain: 

- Triangular–pulse load
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• It is more convenient to normalize the time parameter
• If the ratio td/T becomes greater, more oscillations occur during the 

presence of the forcing function.
• td/T → (step force) 
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• As a force is never applied instantaneously, it is useful to see the 
influence of the response for intermediate cases. In this case, the load-
time functions are as follows:

where tr is the rise time

• Up to time tr, the following equations apply:

- Constant force with finite rise time
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• It is more convenient to normalize the time parameter
• If tr increases – relative to T, the response simply follows the applied 

load and dynamic effect is negligible
• If tr <=1/4T, the effect is similar to that of a suddenly applied load 

small rise times may be neglected in analysis 
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DLF vs. td/T

- Triangular–pulse load



• The spectrum curve can be constructed in a simpler way by looking at 
two extreme situations: 

1) Quasi-static or pressure loading: long td, short Tn

SDOF reaches um before load 
has any significant decay,
F(t)   F



Here consider system energy:



2) Impulsive loading: very short td, long Tn

The load is applied so quickly even 
before the SDOF system has any 
movement. Response treated as free 
vibration with initial velocity due to 
impulse. Strain energy stored is the 
same as previous case. 

Kinetic energy: 



Equating kinetic energy with stored strain energy:



Summary of three regimes 



Elasto-plastic SDOF systems

• Structural elements are expected to undergo large inelastic deformation 
under blast load or high velocity impact. 

• Exact analysis of dynamic response is then only possible by step-by-
step numerical solution requiring nonlinear dynamic finite-element 
software. 

• However, the degree of uncertainty in both the determination of the 
loading and the interpretation of acceptability of the resulting deformation 
is such that solution of a postulated equivalent ideal elasto-plastic SDOF 
system is commonly used (Biggs, 1964).

• Interpretation is based on the required ductility factor



• For example, uniform simply supported beam has first mode shape and the 
equivalent mass:

φ(x) = sin πx/L

M = (1/2)mL
where L is the span of the beam and m is 
mass per unit length.

Simplified resistance function of an elasto-
plastic SDOF system

• The equivalent force corresponding to a uniformly distributed load of intensity p is 
F =(2/π)pL. 

• The response of the ideal bilinear elasto-plastic system can be evaluated in 
closed form for the triangular load pulse comprising rapid rise and linear decay, 
with maximum value Fm and duration td. 

• The result for the maximum displacement is generally presented in chart form as 
a family of curves for selected values of Ru/Fm showing the required ductility μ as 
a function of td/T, in which Ru is the structural resistance of the beam and T is the 
natural period



Maximum response of elasto-plastic SDF system to a 
triangular load



Blast loading effects

• Blast loading effects on structural members may produce both local 
and global responses associated with different failure modes

• The type of structural response depends mainly on:
• the loading rate
• the orientation of the target with respect to the direction of the 

blast wave propagation
• boundary conditions

• Failure modes associated with global response: flexure, direct shear 
or punching shear

• Failure modes associated with local response (close-in effects): 
localized breaching and spalling 



Global structural behavior

• The global response of structural elements is generally a consequence 
of transverse (out-of-plane) loads with long exposure time (quasi-static 
loading):
• global membrane (bending)
• shear responses:

• diagonal tension, 
• diagonal compression
• punching shear
• direct (dynamic) shear

Have relatively minor structural effect in case of 
blast loading and can be neglected

The high shear stresses may lead to direct global 
shear failure and may occur prior to any occurrence 
of significant bending deformations.



Local structural behavior

• The close-in effect of explosion may cause localized shear (localized 
punching - or breaching and spalling) or flexural failure in the closest 
structural elements. 

• Breaching failures are typically accompanied by spalling and scabbing 
of concrete covers as well as fragments and debris

Column responses subject to near-contact blast charges (T. Brewer et al., 2016)



Pressure-Impulse (P-I) Diagrams (Iso-damage curves)

• The pressure-impulse (P-I) diagram is an easy way to mathematically 
relate a specific damage level to a combination of blast pressures and 
impulses imposes on a particular structural element

• There are P-I diagrams that concern with human response to blast as 
well. In this case, there are three categories of blast-induced injury, 
namely: primary, secondary, and tertiary injury

From SDOF to P-I diagram

• Modify the axis of diagram um/(F/k) vs. td/Tn to become normalized force 
(pressure) vs. normalized impulse (force x duration) with respect to displacement 

Step 1: inverting vertical axis and scale to

Hence quasi-static asymptote becomes: 



Step 2: multiply abscissa (duration) by the new ordinate (already force 
measure) and scaling:

Hence impulse asymptote                                        becomes: 





Pressure – impulse diagrams





For a particular type of structure, diagram are presented in absolute 
impulse (specific) vs. overpressure terms, for different damage (um) levels 



Example (for illustration only)

In practice, such diagrams are often constructed on empirical basis, not 
necessarily with explicit SDOF/limit displacement values

P-I diagram for damage to some small buildings





Material behaviors at high strain rate

• Blast loads typically produce very high strain rates in the range of 102 - 104 s-1.
• This high straining (loading) rate would alter the dynamic mechanical properties 

of target structures and, accordingly, the expected damage mechanisms for 
various structural elements. 

• It can be seen that ordinary static strain rate is located in the range: 10-6-10-5 s-

1, while blast pressures normally yield loads associated with strain rates in the 
range: 102-104 s-1.

• For reinforced concrete structures subjected to blast effects the strength of 
concrete and steel reinforcing bars can increase significantly due to strain rate 
effects. 

• The typical effects of increased strain rate on the response of structural steels 
are an increase in yield stress; an increase in ultimate strength, even smaller 
than for yield stress; and a reduction in the elongation at rupture

Strain rates associated with different types of loading



Stress-strain curves of concrete at different 
strain rates

Dynamic increase factor for peak stress of 
concrete



Effect of strain rate on mild steel



Design Example



Fe, Ke, Me = characteristics of the 
equivalent SDOF system
KM =mass factor = Me/M
KL=load factor = Fe/F



k=spring constant
















