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Structural response to blast loading

» Analysis and design of structures subjected to blast loads require:
» understanding of blast phenomena
» understanding of the dynamic response of various structural
elements.
« Complexity in analyzing the response:
» uncertainties of blast load calculations
» time-dependent deformations
» effect of high strain rates
* non-linear inelastic material behavior
» To simplify the analysis, a number of assumptions related to the response
of structures and the loads has been proposed and widely accepted:
« Elastic SDOF Systems
« Elasto-Plastic SDOF Systems
« Blast loading effects:
» Global structural behavior
» Localised structural behavior
* Pressure-Impulse (P-1) Diagrams



Elastic SDOF systems

The simplest discretization of transient problems is by means of the

SDOF approach

A SDOF is a system with only one type of motion (position at any instant
can be defined using a single coordinate)

The actual structure can be replaced by an equivalent system of one
concentrated mass and one weightless spring representing the
resistance of the structure against deformation.

The blast load can be idealized as a triangular pulse
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Formulation of the problem

« Consider a SDOF and the state of equilibrium shown in figure
« Equation of motion as follows:

mii(t) + ku(t) + cu(t) = F(t)

« The effects of damping are generally small and are often neglected
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- Free Vibration

« The force equals zero and there is no damping, c=0
« Motion will occur if the system is given an initial disturbance - initial

displacement u, or initial velocity 1, (e.g. produced by an impulse) - or a
combination of the two
« Equation of motion as follows:

mil(t) + ku(t) =0 P ii(t) +--u(t) =0

« Solution to equation of motion is:

.k K .|k _
u(t)—Clsm\/%t +C2\/%t ,\/;—w

= u(t) = C;sinwt + C,coswt o = natural circular frequency
« Constants C,, C, depend upon initial conditions, u(0),1(0)
* This results in: C,=u(0); C1 =%O)

 The solution for zero external load is therefore:

w(t) = u(0)

sinwt + u(0)coswt
w
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Free vibration of SDOF, undamped, initial displacement
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Free vibration of SDOF, undamped, initial velocity

w = Natural circular frequency
T'=Natural period
f=Natural frequency

Since one complete cycle occurs for
each angular increment wt = 2w,
T and f are given by:

2T m

T=—=2m |—
w



- Forced Vibration

« The motion is the result of the force F(t), and there is no damping, c=0

« The system may be at rest (displacement and velocity are zero at t=0),
or with an initial disturbance (initial displacement u, or initial velocity i,
or a combination of the two).

« The simplest case corresponds to a force F(t) with a constant
magnitude (suddenly applied and remains constant indefinitely)

« Equation of motion as follows:
mil(t) + ku(t) = F(t) D i) +u(t) =2

m

« Solution to equation of motion is:

u(t) = C;sinwt + C,coswt + %
« Constants C,, C, depend upon initial conditions, u(0) = 0,2(0) = 0
F(t).

* This results in: CZ=—T, C,=0

 The solution is:

u(t) = %t) (1 — coswt)



/

Undamped SDOF, suddenly applied constant force

The solution is similar to that of an undamped SDOF, free vibration. The only

difference is that the axis is shifted with %t)

The maximum displacement 2 % is twice the displacement for a statically
applied force F(t).

If a constant force is suddenly applied to a linear elastic system, the resulting
displacement is twice that for the same force applied statically.

Dynamic load factor DLF = ratio of the dynamic deflection at any time to the
deflection that would result from the static application of the load F.

u ku
DLF = — = =— = DLF = (1- coswt)
U, F



- Various load-time functions

Let us consider a system at rest, subjected to a constant force F, with
the duration t;.

. . . . F
The mass m begins to move with acceleration ii = —

If t, is short enough, acceleration is constant, and the velocity at time t

IS: .
L= it Ft L
u=ut, = — = —

d md m

| is the applied impulse (equal to the area below the load-time curve)

u(t) =

Let us consider a general load function. For a time dt , the area below
the curve is the pure impulse. This impulse causes an increment of the

velocity at time 7 equal to %‘” - this velocity can be considered as an

initial velocity imparted to the system at rest. The displacement at time t
due to this impulse (load applied during dr) is (the initial displacement
u(0)=0):

(0 u(0)

. Fdt .
)Sina)t +u(0)coswt = u(t) = ——sinwt = —TSlTla)(t —T)
w w maw




The total displacement is therefore the sum of the effects of all
elements of impulse between zero and t. Thus: e

u = f;%sina)(t — 7)d7) L~

%
Alrtey

R S I t
The static deflection ug due to F may be expressed as:

F F
st =% T wtm

\\\\\\\\\\\}

t
= u= usta)f f()sinw(t —t)drt
0

If the effects of initial displacement and velocity are also included, the
general expression for the response of undamped, liner elastic SDOF
system subjected to any load function and/or initial condition is:
y t
u
U = uycoswt + zosina)t + usth f(t)sinw(t —t)drt
0



- Rectangular—pulse load

* In this case, a constant load is sudenly applied within with a limited
duration, t Ft)l
« Up to time t,, the following equations apply:

1 F1
Uy, =—(1 — coswt,)
k 7 t
. 1 . >
« For the response after ty, we consider as initial condition the velocity at
t,. Replacing t by t-t, , displacement and velocity u, and 1, by u,4, and
u,, and considering f () =0, we obtain:
u = %(1 — coswty)cosw(t — td) + %Sina)tdsina)(t — td)=
=% [cosw(t —t;) — coswt]
il
Uy = f = DLF =1—coswt =1— cosZn% for t<=t
u
DLF = — = DLF = cosw(t —t,;) — coswt = cos2m (% — %) — cosZn% for t>=t,

ust



It is more convenient to normalize the time parameter
« Iftyis small (approaches zero), the maximum deflection (and stress)
tends to zero
* Fort/T>0.5, the maximum response is the same as for infinite
duration load

2.5

t,/T=5/4
) t,/T=1/2 Fof
t,/T=3/10
15 ¢ P
t
1 =dmedn=ly t,
l
0.5 :
N | t,/T=1/10
7 0
05 t, 2t, 3t, 4t 5td
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-1.5
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- Triangular—pulse load

* In this case, the system is at rest and is subjected to a force F which
has the value F, - suddenly applied and then decreasing linearly to zero
at t,

« Fort<=ty, u,=0, u, =0, F(t) = F,(1 — ti) and the following equations

apply: F F sinwcjt F(t)ﬂ
u=-=(1-coswt) +—=( —t)
) nde ¢ Fi
or DLF=1 — coswt +>—— ——
(l)td td t
» For the response after t,, we obtain: ty
_ F, ;sinwtd v F, . +coswtd_i —
Uy = — ( ot coswty) Uy = (wsinwt, . td) f(r)=0

« Substituting in general equation and replacing t by t-t;, we obtain:

_F, . o _ _F,
u—kwtd [sinwt — sinw(t — td)] L coswt

DLF=$ [sinwt — sinw(t — td)] - coswt



It is more convenient to normalize the time parameter
 If the ratio t/T becomes greater, more oscillations occur during the
presence of the forcing function.
« t,/T —oo(step force)

t,/[T=2 F(t)
£/ T=1 F1‘

t,/T=1/2




- Constant force with finite rise time

« As a force is never applied instantaneously, it is useful to see the
influence of the response for intermediate cases. In this case, the load-
time functions are as follows:

A

F(t)

F(t) = ti for t<t.
f(t) = 1 for t>=t. F,
where t, is the rise time {
« Up to time t, the following equations apply: t,
= DLF = tl(t - Smwt) for t<t.
= DLF =1+ wlt [sinw(t — tr) — sinwt] for t>=t

T



« Itis more convenient to normalize the time parameter

If t. increases — relative to T, the response simply follows the applied
load and dynamic effect is negligible

If t. <=1/4T, the effect is similar to that of a suddenly applied load =>
small rise times may be neglected in analysis

tIT=1/2 LIT=1I5

, 2t, 3t 4t S5tr
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- Triangular—pulse load

DLF vs. t/T
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« The spectrum curve can be constructed in a simpler way by looking at
two extreme situations:

1) Quasi-static or pressure loading: long tg, short T,

F(r) ;‘f’R(I)

£ 5ST SDOF reaches u,, before load
d n has any significant decay,
I F(t) ~ F




I R(u) 4

(1)

”Hi

Here consider system energy:

|
Fu, =— [,

"2

U

2
i = 2 e
I F or | DLF

l m

Uy

2

m

Quasi-static
asymptote




2) Impulsive loading: very short f,, long T,

The load is applied so quickly even
before the SDOF system has any
movement. Response treated as free
vibration with initial velocity due to

) , impulse. Strain energy stored is the
0 ¢ PR fm [ same as previous case.
1
I =— 5 =i, li, = L
2 m
. 1 4 T°
Kinetic energy: KE =—muy = —

2m



Equating kinetic energy with stored strain energy:

2

Pl I
= —ku U =
2m 2 " " Jkm
. / 1
DLF =—"_ = out 1 =—Ft, =mii,
F/k xf]an(F/]{) 2

1/ 2Fi; 1
—— .{)”fd
c\fkm(F/k) 2

DLF =

DIF = 77| |Impulsive
/i asymptote




Summary of three regimes

Boundaries of three regimes can be specified in terms of
the product wr,or /T, as below:

Impulsive loading | 0.4> ar, 0.02rn> 1,7,
Dynamic loading 0.4< or;<40 |0.02n<1,/T,<2n L.
:
Quasi-static loading 40< ar, 2n< t/T, % 'o'g
o
E <
2.5
2
 aanl
e N\ Qs - sdati aspmphote
% 1 \!mz !eecc,,m?-'rle
= s
0.5 j
0
0 2 = 6 8 10



Elasto-plastic SDOF systems

« Structural elements are expected to undergo large inelastic deformation
under blast load or high velocity impact.

« Exact analysis of dynamic response is then only possible by step-by-
step numerical solution requiring nonlinear dynamic finite-element
software.

« However, the degree of uncertainty in both the determination of the
loading and the interpretation of acceptability of the resulting deformation
is such that solution of a postulated equivalent ideal elasto-plastic SDOF
system is commonly used (Biggs, 1964).

- Interpretation is based on the required ductility factor [ = Vp,/Ve.



where L is the span of the beam and m is

For example, uniform simply supported beam has first mode shape and the
equivalent mass:

>

Resistance

@(x) = sin mx/L
M= (1/2)mL e [ g

mass per unit length. 5 5 >

ye ym DEfleCtion
Simplified resistance function of an elasto-
plastic SDOF system

The equivalent force corresponding to a uniformly distributed load of intensity p is
F =(2/T)pL.

The response of the ideal bilinear elasto-plastic system can be evaluated in
closed form for the triangular load pulse comprising rapid rise and linear decay,
with maximum value F,_ and duration t,.

The result for the maximum displacement is generally presented in chart form as
a family of curves for selected values of R /F,, showing the required ductility y as
a function of t,/T, in which R, is the structural resistance of the beam and T is the
natural period
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triangular load



Blast loading effects

» Blast loading effects on structural members may produce both local
and global responses associated with different failure modes
* The type of structural response depends mainly on:
* the loading rate
» the orientation of the target with respect to the direction of the
blast wave propagation
* boundary conditions
« Failure modes associated with global response: flexure, direct shear
or punching shear
« Failure modes associated with local response (close-in effects):
localized breaching and spalling



Global structural behavior

« The global response of structural elements is generally a consequence
of transverse (out-of-plane) loads with long exposure time (quasi-static
loading):

« global membrane (bending)
« shear responses:

« diagonal tension, . . .
, ] Have relatively minor structural effect in case of
* diagonal compression blast loading and can be neglected

’ pgnchlng She.ar The high shear stresses may lead to direct global
 direct (dynamic) shear _J~ shear failure and may occur prior to any occurrence
of significant bending deformations.




LLocal structural behavior

The close-in effect of explosion may cause localized shear (localized
punching - or breaching and spalling) or flexural failure in the closest
structural elements.

Breaching failures are typically accompanied by spalling and scabbing
of concrete covers as well as fragments and debris

) RC Column:

> -
(b) RC Column: Partial
Breach Breach k-line fracture

c Steel Column: (d) Steel Column:
Brittle fracture

Column responses subject to near-contact blast charges (T. Brewer et al., 2016)



Pressure-Impulse (P-l) Diagrams (Iso-damage curves)

* The pressure-impulse (P-I) diagram is an easy way to mathematically
relate a specific damage level to a combination of blast pressures and
Impulses imposes on a particular structural element

* There are P-I diagrams that concern with human response to blast as
well. In this case, there are three categories of blast-induced injury,
namely: primary, secondary, and tertiary injury

From SDOF to P-I diagram

* Modify the axis of diagram u,/(F/k) vs. t,/T, to become normalized force
(pressure) vs. normalized impulse (force x duration) with respect to displacement

Step 1: inverting vertical axis and scale to

- e 2F load (pressure)
- ku, max. resistance
Hence quasi-static asymptote becomes:

2F

/mm

1

Vv



Step 2: multiply abscissa (duration) by the new ordinate (already force
measure) and scaling:

L't F 1 , F/k) 1/2F1;
X=r =—,l, =
Z:J kum 2 ; I'Im Hm \f*']{”?

! non-dimensional
u, A km impulse

um — [
L k(P
i ]

u,, xﬁ!m? -

X =

Hence impulse asymptote becomes:
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Pressure — impulse diagrams
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For a particular type of structure, diagram are presented in absolute
impulse (specific) vs. overpressure terms, for different damage (u,,) levels

4 (o
Specific 10 o
impulse 15
Q.
=
103 | &
O
&
i
‘»
\_
102 — g l-lm,i
- ) Um 1
impulse asymptote
10 | | L5
102 104 10° 10°

I (Pa)



Example (for illustration only)

In practice, such diagrams are often constructed on empirical basis, not
necessarily with explicit SDOF/limit displacement values

1 04 T Example
A: almost complete
i (Pa-s) ig demolition
SAS € = A B: severe damage
& C,: moderate damage
103 | § C,: minor/moderate
© \ B damage
IS \ D: minor damage
@ Cp
7]
1021 £\ c,
D
impulse asymptote
10 | | >
3 4 10° 106
103 10 P.(Pa)

P-1 diagram for damage to some small buildings



Typical Blast Damage to Structures

Prassure Damage
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Typical Blast Damage to Structures
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Material behaviors at high strain rate

« Blast loads typically produce very high strain rates in the range of 102 - 104 s1,
« This high straining (loading) rate would alter the dynamic mechanical properties
of target structures and, accordingly, the expected damage mechanisms for

various structural elements.

« It can be seen that ordinary static strain rate is located in the range: 10-%-10-° s
1, while blast pressures normally yield loads associated with strain rates in the
range: 10%2-104 s,

* For reinforced concrete structures subjected to blast effects the strength of
concrete and steel reinforcing bars can increase significantly due to strain rate
effects.

« The typical effects of increased strain rate on the response of structural steels
are an increase in yield stress; an increase in ultimate strength, even smaller
than for yield stress; and a reduction in the elongation at rupture

Quasi-static I Earthquake I Impact I Blast I

19'6 1(|}'5 1?'4 1{|)'-‘ 1?'-’ 1(|)" 19” 191 191 1?3 195 19“

Strain rate (s)

Strain rates associated with different types of loading




Stress (MPa)

250

200 -

150 4

100 4

50 4

Q 0.002 0.004 0.006 0.008 0.01
Strain

Stress-strain curves of concrete at different
strain rates

2 | A

Dynamic Factor
-

0 T T .
1.E04 1.E02 1.B+00 1.B+02 1.E+04
Strain rate (s)

Dynamic increase factor for peak stress of
concrete



LOWER YIELD STRESS 1 (MNm~?)

400
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3(_1
300 - 7 =
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8] [
200 |- 5%!“3 A
100 F -
|
|
|
D | | | | | | | ‘q | |
10¢ 103 102 ' 9 10 16 168 10* 100 et

STRAIN RATE ¥ (SEC™Y)
Effect of strain rate on mild steel



Design Example

Design a steel beam for elastic design response:

A steel beam of 9.14 m length is clamped at both ends. For
elastic design, the bending stress should be less than 207
MPa.

The beam is subjected to dead loads of 14.6 KN/m and 89
KN at mid span.

The beam Is braced at load point so that there is no LTB. It
Is subjected to a dynamic point load F(t) at mid-span as
shown in the figures.



2L,

f(1)+89kN(Dead)
14.6 kN/m

l (Dead)
_ ea‘h\.

/S

4.57m >‘< 4.57m
t 0.14m j

[, 56C

pit)

o T T O
Ll

AR RN

TR L R

- |

F., Ko, M, = characteristics of the
equivalent SDOF system

Ky =mass factor = M_/M

K, =load factor = F_/F



HERE

Elastic Design HHA

Assume t/T ~ 2/3; from Fig. 2.9, DLF =~ 1.4. This only
affects the dynamic point load P(f) but not the dead point

2
M :1-L’DL +FDL+FiL
12 8 8
14.6x9.14° 89x9.14 2224x9.14

(DFL )y

M. .. + - x1.4=559 1kNm
12 8 8

Required Elastic Section Modulus:

W _Mmm; — 5591 :2.?3{10_31113

T o 207x10°
Most economical section is 24WF76 (UB 610x229x113)

having /=8.72x10* m* and W_=2.87x10- m?

_192ET  192x(210x10°)x8.72x10™

k
iy 9.14°

=46.047kN/m k=spring constant



From Table 5.2, for elastic clamped beams subjected to
mid-span point load,
K, =10 K,,=1.0 concentrated mass (for point load)

K, =037 distributed mass (for dead load u.d.l.)

89%x1.0+14.6x9.14x0.37
9.81

=14.11kNsec’/m.

M, =Y Ky M =

K, =K, k=46,047x1.0=46.047kN/m

T — 2},1. Mﬂ = 2;:- I 4 1 1 == 0 1 1 ].SEC Table 5.2 Transformation Factors for Beams end One-way Slabs 4 E
e 4 6 0 4 ? : Jp, = ultimate moment capacity at support
A&Q 5 Wrn = ulti ity at midi Fixed ends

Maes facior Load-mass factor
f‘ Ku Kru Bfocti
sctive
4 _0.08/0.111=0.72 e | e b || o
— ) 12 prm— = diagram range Jactor resisiance constant conatant reaciion
Kz Concena Ui Concen- i, Bn x kst v
E trated wiform §ted wlorm
mass mass
mass® mags®
129Tp 384E7
Elastic | 0.53 0.41 . 0.77 i : = | 0 _36R + 0.14F
Elgstic- 8 384E7 30TET
lastio 0.64 G.50 0.78 z(ﬁliﬁ+9lh‘m) I 7 0.39K + O.11F
8
Plastic 0.50 .33 Q.66 z(fﬂth-i-mﬂm) [ 0.38Rn -+ 0.12F
3 X 4 10287
| Elsstic | 1.0 1.0 0.37 1.0 0 | et | S [ 0.71k — 0.21F
4
IR, Plastic | 1.0 1.0 0.3 1.0 038 | (e + Tew) N R 0.75Rn — 0.25F
o+

* Concentrated mass is lumped at the cencenirated load,
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2nd round iteration from Fig. 2.9,

(DLF), _=1.35

_ 146x9.14° 89x9.14 2224x9.14

M. = + x1.35=546.3kNm
12 3 3
Required Elastic Section Modulus:
M 546. 5
o, =——= 10 =1903x10°kN/m” =190.3MPa

=W 287x10°

[

From Fig. 2.9(a), t/T=0.72, DLF = 1.35
— R_=1.35Xx222.4 = 300.2 kN

V. =0.71x3002-0.21x2224+dead
=213.1-46.7+89x0.5+14.6x9.14x0.5=277.6kN



Elasto-plastic design

Design a steel beam for plastic design response:

A steel beam of 9.14 m length is clamped at both ends. For
plastic design, the bending stress should be less than its
yield strength of 344 MPa

The beam Is subjected to dead loads of 14.6 kN/m and 89
KN at mid span.

The beam Is braced at load point so that there is no LTB. It
IS subjected to a dynamic point load F(t) at mid-span as
shown in the figures.



S (r)+89kN(Dead)

14.6 kKN/m
D (Dead) i
Q B o e _\“‘! Q
S N
4.57 4.57m
L m >‘<
0.14m
=
A
F(1)
=222 4kN }-----

[.SeC




HERE
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Plastic Design

Assume t/T ~ 2/3 and from Fig. 2.9, DLF =1.4. This only
affects the dynamic point load P(t) but not the dead point

_wDLz FpLl  RL
N 8
14.6x9.14> 89x9.14 2224x9.14

M

(DFL)

M. =— + - x1.4=5591kNm
12 3 3
Required Plastic Section Modulus:
M 5359
W, = ctme AL g e e

Phrel 5 344%10°

Most economical section is UB 533x210x82 having
[=4.75x10* m* and W,=2.06x10-> m* and Moment capacity:

Ms = Mn=Wpix o =2.06x344=T708.6kNm




From Table 5.2, for plastic clamped beams subjected to

mid-span point load, maximum resistance Is:

R, =4(Ms+Mn)/L=4x2x7086/9.14=620kN

Dynamic reaction is:

7

max

0.75%x620—0.25x222.4 + dead
65—55.6+05%x89+0.5x14.6x9.14=

520.6 kN

Table 5.2

SiCrs = ultimate moment eapacity at support
Mewm = ultimate moment capaci

Transformation Factors for Beams and One-way Slabs

—
acity at midspan Fixed ends
Maso factor Load-mase fact
Ex T
2
Loading Strain Lo ﬂ?‘"“m Spring apris Dynn‘
diagram range factor resisianes consiant conatt reacis
| Grmiorm | CoRCET eiform Rn 5 s v
traled trale
mass mass
mmass’ wmass®
. 12902, 3BLET
F=pi Elast 0.41 7 T b
Elastic- 8 384Er | 307E!
i o 6.50 7 Or 4 9wy | = o
) Plasti 0.33 8 e, + Moy (EEN [ —
F
192ET
| Ia Mo+ Mrw) | |
7]
| ) las (@M, + IMm)
ated ma: moed at the concenirated load.




Comparison of Design Example 2

Beam chosen

Maximum resistance

Dynamic reaction

Elastic design

UB 610x229x113

300.2 kN

277.6 kN

Plastic design

UB 533x210x82

620 kN

520.6 kN



