Universitatea Politehnica Timișoara Facultatea de Construcții Departamentul de Căi de Comunicație Terestre, Fundații și Cadastru

FOUNDATIONS

- CURS 3 -

Bearing Capacity of Foundations

Prof.dr.ing Adrian CIUTINA

CHAPTER III – BEARING CAPACITY OF FOUNDATIONS § 3.3 Bearing capacities according to Romanian norm NP 112-2014

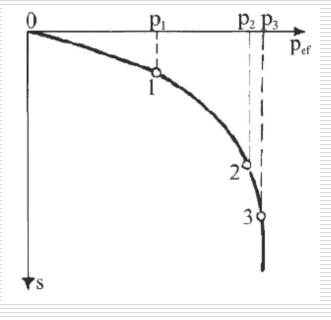
In different design situations we may use as bearing capacity:

- Conventional pressure p_{conv}
- Plastic pressure p_{pl}
- Critical pressure p_{cr}

□ The conventional pressure p_{conv} is used for usual "prescriptive method" used in NP112-2014

□ The plastic pressure p_{pl} is used in serviceability limit state design, according to NP112-2014 and EN 1997-1.

□ The critical pressure p_{cr} is used for usual "hybrid model method" used in NP112-2014



p_{conv}

▼s

Conventional pressure p_{conv}

- □ The conventional pressure of a soil represents the bearing capacity of the soil by considering its linear behavior (interval 0-1).
- The conventional pressure is obtained
- empirically (empirically = through experimental tests and
- interpretation of experimental data, without theoretical support).
- □ NP112 offers the following formula for computing $p_{conv} = \overline{p_{conv}} + C_B + C_D$
- where:
- $\overline{p_{conv}}$ is the base value of the conventional soil pressure (given in tables)
- C_B is the width correction
- C_D is the depth correction
- □ The $\overline{p_{conv}}$ value is given in NP 112 for different soils and foundation basis having the width B=1.0m and the foundation depth D= 2.0m.

Conventional pressure pconv

Compact soils

_		Tabelul D.1
	Denumirea terenului de fundare	p _{conv} [kPa]
Roci stâncoas	e	1000 ÷ 6 000
Roci semi-	Marne, marne argiloase și argile marnoase compacte	350 ÷ 1100
stâncoase	Şisturi argiloase, argile şistoase şi nisipuri cimentate	600 ÷ 850

Coarse granular soils

		Tabelul D.2
	Denumirea terenului de fundare	p _{conv} [kPa]
Pământuri	Blocuri și bolovănișuri cu interspațiile umplute cu nisip și pietriș	750
foarte grosiere	Blocuri cu interspațiile umplute cu pământuri argiloase	350 ÷ 600 ¹⁾
	Pietrișuri curate (din fragmente de roci cristaline)	600
Pământuri grosiere	Pietrișuri cu nisip	550
	Pietrișuri din fragmente de roci sedimentare	350
	Pietrișuri cu nisip argilos	350 ÷ 500 ¹⁾

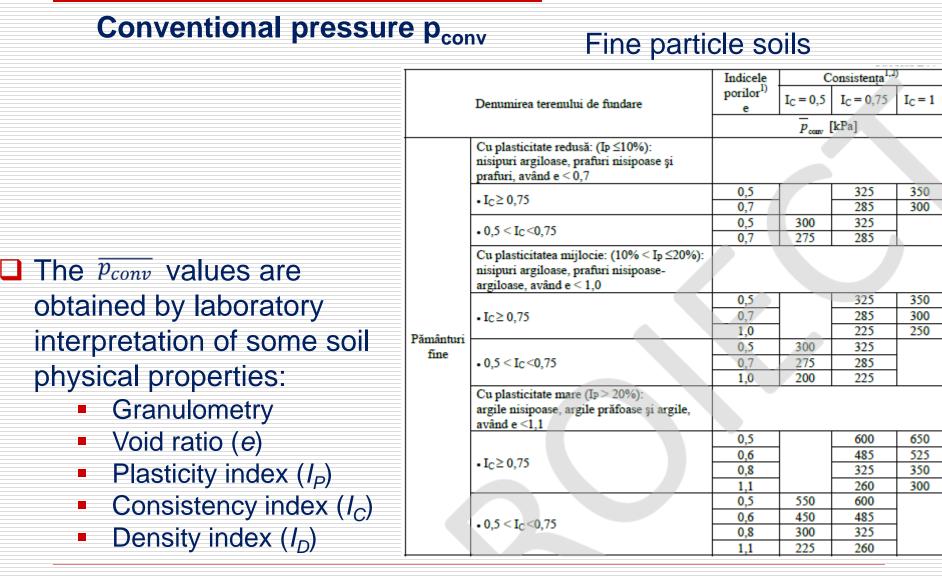
Conventional pressure p_{conv}

Fine granular soils

				Tabelul D.3
		Indesate ¹⁾	Indesare medie ¹⁾	
	Denumirea teres	p _{conv} [kPa]		
	Nisip mare		700	600
	Nisip mijlociu		600	500
Dământuri	Nisip fin	uscat sau umed	500	350
Pământuri grosiere		foarte umed sau saturat	350	250
	Nisip fin prăfos	uscat	350	300
		umed	250	200
		foarte umed sau saturat	200	150

□ The $\overline{p_{conv}}$ values are obtained by laboratory interpretation of some soil physical properties:

- Granulometry
- Void ratio (e)
- Plasticity index (*I_P*)
- Consistency index (I_C)
- Density index (I_D)



Conventional pressure p_{conv}

\Box Width correction C_B

for B≤5m: $C_B = \overline{p_{conv}}K_1(B-1)$

for B>5m: $C_B = 0.4 \overline{p_{conv}}$ for granular soils $C_B = 0.2 \overline{p_{conv}}$ for compact soils

B is the foundation width $K_1=0.1$ for granular soils $K_1=0.05$ for compact soils

\Box Depth correction C_D

for D≤2m: $C_D = \overline{p_{conv}} (D-2)/4$

for D>2m: $C_D = \overline{\gamma}(D-2)/4$

where:

D is the foundation depth

 $\bar{\gamma}$ is the volume weight of the layers located above foundation foot

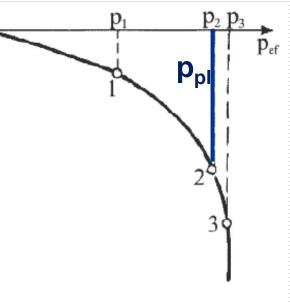
where:

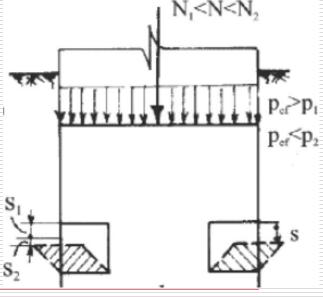
Plastic pressure ppl

- □ Overpassing the point 1 on *p*-s soil response curve, the soil passes in linear-plastic behavior.
- □ The **plastic pressure** represents the bearing capacity of the soil corresponding to a limit state that considers the allowable settlement of the foundation soil under acting loads.

Obs: Foundation loads = structural loads (fundamental combination) + foundation weight + long-term loads

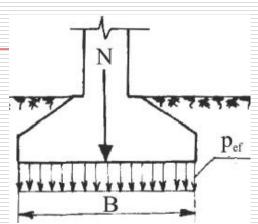
Conventionally, p_{pl} is computed for the following limit state: the depth of the plastic zones reaches B/4.





Plastic pressure ppl

Considering a continuous foundation of width *B* at a depth D_f , transmitting under the foundation the pressure *p*.

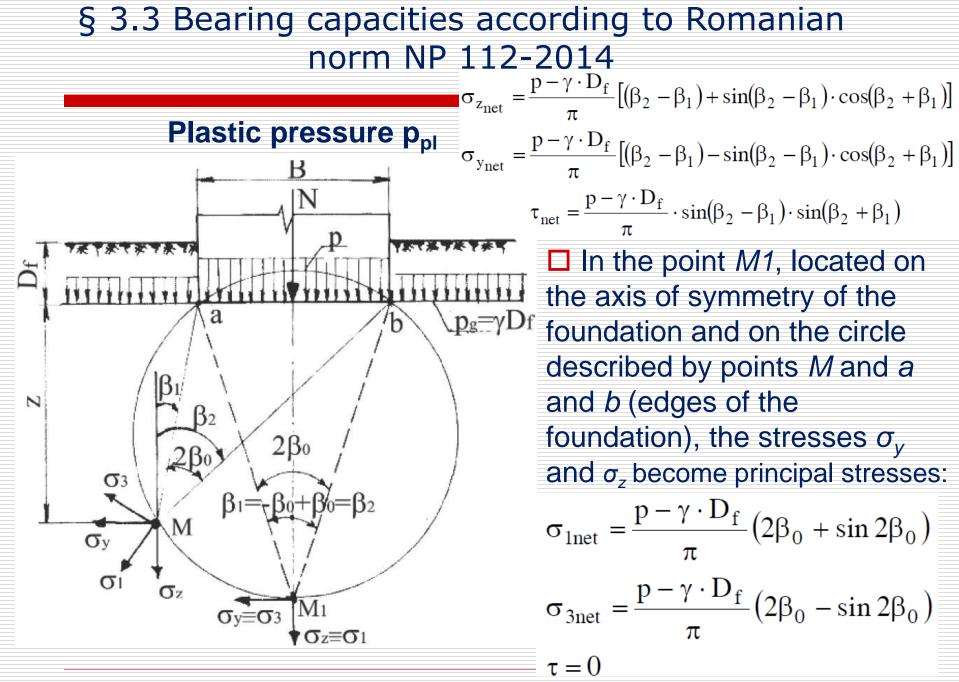


- □ The geologic pressure p_g under the foundation is: $p_a = \gamma \cdot D_f$ □ The net pressure given by foundation (subtracting the geologic pressure) is: $p_{net} = p - p_a = p - \gamma \cdot D_f$
- □ In a point *M* of the foundation soil, in which the angle created between *M* and the foundation limits is $2\beta_0$, the stresses are generated by both the geological pressure and the foundation:

$$\sigma_{z_{net}} = \frac{p - \gamma \cdot D_f}{\pi} [(\beta_2 - \beta_1) + \sin(\beta_2 - \beta_1) \cdot \cos(\beta_2 + \beta_1)]$$

$$\sigma_{y_{net}} = \frac{p - \gamma \cdot D_f}{\pi} [(\beta_2 - \beta_1) - \sin(\beta_2 - \beta_1) \cdot \cos(\beta_2 + \beta_1)]$$

$$\tau_{net} = \frac{p - \gamma \cdot D_f}{\pi} \cdot \sin(\beta_2 - \beta_1) \cdot \sin(\beta_2 + \beta_1)$$



Adrian Ciutina, Foundations

Plastic pressure ppl

□ These relatiations show that the principal stresses under a foundation are dependent on the value of the pressure *p* generated by the foundation and the angle $2\beta_0$.

$$\sigma_{\text{1net}} = \frac{p - \gamma \cdot D_{\text{f}}}{\pi} (2\beta_0 + \sin 2\beta_0)$$

$$\sigma_{\text{3net}} = \frac{p - \gamma \cdot D_{\text{f}}}{\pi} (2\beta_0 - \sin 2\beta_0)$$

$$\tau = 0$$

 \Box For a given *p* value, in all points for which the angle created with the foundation edges is $2\beta_0$, the principal stresses have the same values.

 \Box The geometrical locus of these points is the circle passing through the foundation edges and the points *M*.

□ The total stresses in points M are obtained by adding to the pressure given by pressure p the geologic pressures:

$$\sigma_{1g} = \gamma \cdot D_{f} + \gamma \cdot z = \gamma \cdot (z + D_{f})$$

$$\sigma_{3g} = K_0 \cdot \sigma_{1g} = K_0 \cdot \gamma \cdot (z + D_f)$$

With $K_0 = 0$ for the soils in plastic zones

Plastic pressure p_{nl}

The total stresses are expressed by:

$$\sigma_{1} = \frac{\mathbf{p} - \gamma \cdot \mathbf{D}_{f}}{\pi} (2\beta_{0} + \sin 2\beta_{0}) + \gamma \cdot (\mathbf{z} + \mathbf{D}_{f})$$
$$\sigma_{3} = \frac{\mathbf{p} - \gamma \cdot \mathbf{D}_{f}}{\pi} (2\beta_{0} - \sin 2\beta_{0}) + \gamma \cdot (\mathbf{z} + \mathbf{D}_{f})$$

These relations show that the principal stresses under a foundation located on a circle creating a sectorial angle $2\beta_0$ between the edges of the foundation are not constant but depends on the height z of the considered point.

For having some limiting conditions on the development of the plastic zones, is important to know the depth z on which plastifications develop under the principal stresses σ_1 and σ_3 .

The development of plastic deformations in foundation soils assumes the fulfilment of conditions for soil fracture, which in case of $\sigma_1 - \sigma_3$ cohesive soils is expressed through: $\sin \phi =$ $\sigma_1 + \sigma_3 + 2 \cdot c \cdot ctg\phi$

Adrian Ciutina, Foundations

Plastic pressure ppl

C Replacing σ_1 and σ_3 in the above condition one can find the depth z in function of the angle $2\beta_0$.

$$z = \frac{p - \gamma \cdot D_{f}}{\gamma \cdot \pi} \cdot \left(\frac{\sin 2\beta_{0}}{\sin \phi} - 2\beta_{0}\right) - D_{f} - \frac{c}{\gamma} \operatorname{ctg} \phi = f(2\beta_{0})$$

□ Practically, in the foundation soil there can exist several points creating a sectorial angle $2\beta_0$ with the edges of the foundation for which there could be produced plastic deformations under a given load *p* produced by the foundation.

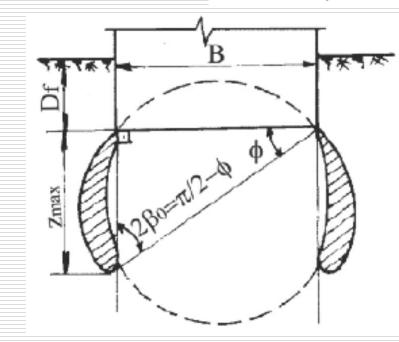
□ For determining the maximum depth z_{max} to which the plastic zones can be extended in the foundation soil, one set the condition of the maximum for the function $z=f(2\beta_0)$:

$$\frac{\mathrm{d}z}{\mathrm{d}\beta_0} = \frac{p - \gamma \cdot D_f}{\gamma \cdot \pi} \cdot \left(\frac{2\cos 2\beta_0}{\sin \phi} - 2\right) = 0 \quad \text{Resulting} \quad 2\beta_0 = \frac{\pi}{2} - \phi$$

Plastic pressure ppl

C Replacing the value $2\beta_0$ in the relationship of z, it results the maximum depth of the plastic zone as:

$$z_{\max} = \frac{p - \gamma \cdot D_{f}}{\gamma \cdot \pi} \cdot \left(\operatorname{ctg} \phi - \frac{\pi}{2} + \phi \right) - D_{f} - \frac{c}{\gamma} \operatorname{ctg} \phi$$



N.N. Maslov proposes the existence of plastic zones only outside of the vertical foundation borders ($z_{max}=B \cdot tg\Phi$) and:

$$p = p_1 = \frac{\gamma \pi \cdot \left(\mathbf{B} \cdot tg\phi + \mathbf{D}_f + \frac{\mathbf{c}}{\gamma} \cdot ctg\phi \right)}{ctg\phi - \frac{\pi}{2} + \phi} + \gamma \cdot \mathbf{D}_f$$

Plastic pressure ppl

□ The Romanian norm NP112 limits the extension of the plastic zones in the foundation soil at $z_{max} = B/4$: $p = p_1 = \frac{\gamma \pi \cdot \left(\frac{B}{4} + D_f + \frac{c}{\gamma} \cdot ctg\phi\right)}{ctg\phi - \frac{\pi}{2} + \phi} + \gamma \cdot D_f$

■ By grouping the terms in the above formula, the relation can be written as: $p_{pl} = \overline{\gamma} \cdot B \cdot N_1 + q \cdot N_2 + c \cdot N_3$

In normative formula, a coefficient of the working conditions is applied (formula given for isolated foundations without basement):

$$p_{pl} = m_i \cdot (\overline{\gamma} \cdot \mathbf{B} \cdot \mathbf{N}_1 + q \cdot \mathbf{N}_2 + c \cdot \mathbf{N}_3)$$

OBS: A similar formula can be derived for structures with basements.

Plastic pressure ppl

$$p_{pl} = m_i \cdot (\overline{\gamma} \cdot \mathbf{B} \cdot \mathbf{N}_1 + q \cdot \mathbf{N}_2 + c \cdot \mathbf{N}_3)$$

where:

 m_i is the working conditions coefficient ($m_i=1.1...2$);

 $\bar{\gamma}$ - average weight density pf soil layers in height B/4 (kN/m³);

q – design overload (geologic pressure) at the level of the footing;

c – design value of specific cohesion of the soil layer beneath the footing

 N_1 , N_2 , N_3 – dimensionless coefficients (bearing capacity coefficients), given in tables in function of the friction angle Φ of the soil layer beneath the footing

Plastic pressure ppl

$$p_{p1} = m_i \cdot (\overline{\gamma} \cdot B \cdot N_1 + q \cdot N_2 + c \cdot N_3)$$

No coefficients

						<i>u</i> ,	
φ grade	N_l	N_2	N_3	φ grade	N_1	N_2	N_3
0	0,00	1,00	3,14	24	0,72	3,87	6,45
2	0,03	1,12	3,32	26	0,84	4,37	6,90
4	0,06	1,25	3,51	28	0,98	4,93	7,40
6	0,10	1,39	3,71	30	1,15	5,59	7,95
8	0,14	1,55	3,93	32	1,34	6,35	8,55
10	0,18	1,73	4,17	34	1,55	7,21	9,21
12	0,23	1,94	4,42	36	1,81	8,25	9,98
14	0,29	2,17	4,69	38	2,11	9,44	10,80
16	0,36	2,43	5,00	40	2,46	10,84	11,73
18	0,43	2,72	5,31	42	2,87	12,50	12,77
20	0,51	3,06	5,66	44	3,37	14,48	13,96
22	0,61	3,44	6,04	45	3,66	15,64	14,64

Values of N_1 , N_2 , N_3 coefficients

Adrian Ciutina, Foundations

Plastic pressure ppl

$$p_{pl} = m_i \cdot (\overline{\gamma} \cdot \mathbf{B} \cdot \mathbf{N}_1 + q \cdot \mathbf{N}_2 + c \cdot \mathbf{N}_3)$$

Values of m_i coefficients

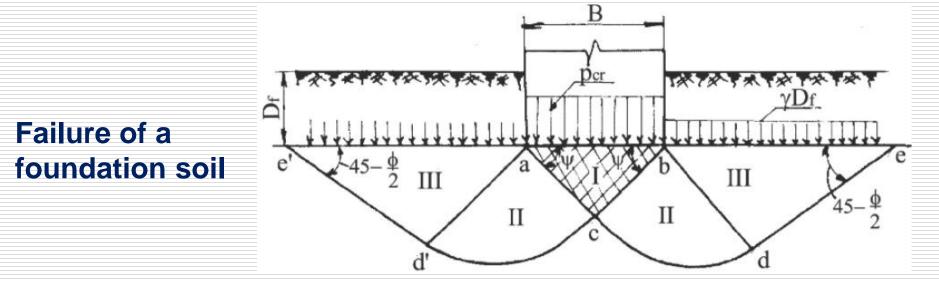
Nr. crt.	Denumirea terenului de fundare			
1.	Bolovănișuri cu interspațiile umplute cu nisip, pietrișuri și nisipuri cu excepția nisipurilor fine și prăfoase	2,0		
2.	Nisipuri fine: - uscate sau umede (S _r ≤0,8)	1,7		
	- foarte umede sau saturate ($S_r > 0.8$),	1,6		
3.	Nisipuri prăfoase: - uscate sau umede (S _r ≤ 0,8)	1,5		
	- foarte umede sau saturate $(S_r > 0.8)$ r	1,3		
4.	Bolovănișuri și pietrișuri cu interspațiile umplute cu pământuri coezive cu I _c ≥0,5	1,3		
5.	Pământuri coezive cu $I_c \ge 0.5$	1,4		
6.	Bolovănișuri și pietrișuri cu interspațiile umplute cu pământuri coezive cu I _c < 0,5	1,1		
7.	Pământuri coezive cu I _e < 0,5	1,1		

Pef

Critical pressure p_{cr}

By increasing the soil pressure beyond point 2 we can arrive to the failure condition of the foundation soil.

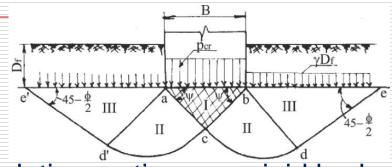
□ In this stage, the failure mechanism produced below the foundation are due to increased settlements by soil shear.



YS

Critical pressure p_{cr}

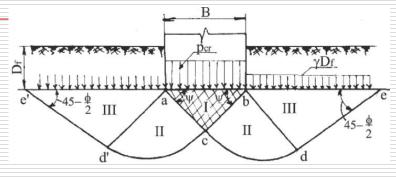
□ K Terzaghi divided the soil foundation in three zones:



- □ **zone I** a prismatic zone under the foundation, acting as a rigid body (thrusting zone)
- **zone II** represents sheared volumes of soil (**radial shearing zones**), presenting shear failure boundaries under the form of a circular arch or logarithmic spiral.
- □ **zone III (passive soil zones)** represents passive resistance soil volumes, loaded only by geologic pressure and the thrust.
- □ The theoretical models for finding p_{cr} are based on equilibrium condition on the foundation soil.
- OBS: Karl Terzaghi was a pioneer searching theories about soil behavior under the applied loads. By his studies made possible the study of consolidation of soils and also calculation of bearing capacities of foundation soils.

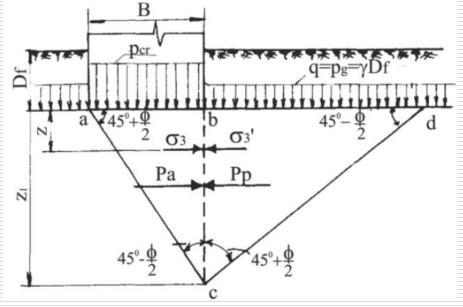
Critical pressure p_{cr}

□ Considering a continuous foundation of width *B*, transmitting to the soil an uniform pressure $p_{ef}=p_{cr}$, the failure and the sliding



+Z

of the foundation soil takes place by considering *a-c* and *c-d* planes, at angles $45-\Phi/2$ and respectively $45+\Phi/2$ (Rankine' hypothesis).



□ At depth *z* below the foundation, the principal vertical stresses σ_1 (a*c*-*d* volume) for the active zone and σ_1 ' for the passive zone (*b*-*c*-*d* volume) are:

$$\sigma_{1} = p_{cr} + \gamma \cdot z$$

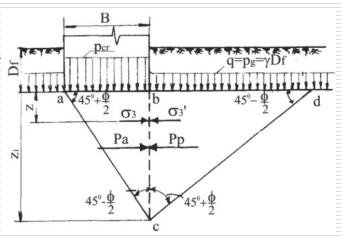
$$\sigma_{1} = \gamma \cdot D_{f} + \gamma \cdot z = \gamma \cdot (D_{f})$$

Adrian Ciutina, Foundations

Critical pressure p_{cr}

The principal horizontal stresses can be expressed from failure condition, in function of the principal vertical stress σ_1 by:

$$\sigma_3 = \sigma_1 \cdot \frac{1 - \sin \phi}{1 + \sin \phi} - 2 \cdot c \cdot \frac{\cos \phi}{1 + \sin \phi}$$



 \Box Replacing σ_1 and considering trigonometric transformations, σ_3 and σ'_3 becomes:

$$\sigma_3 = \sigma_1 \cdot K_a - 2c\sqrt{K_a} = (p_{cr} + \gamma \cdot z) \cdot K_a - 2c\sqrt{K_a}$$

$$\sigma'_{3} = \sigma'_{1} \cdot K_{p} + 2c\sqrt{K_{p}} = \gamma \cdot (D_{f} + z) \cdot K_{p} + 2c\sqrt{K_{p}}$$

where:

 K_a is the coefficient of active thrust: $K_a = tg^2(45^0 - \frac{\Phi}{2})$ 2 K_p = tg²(45⁰+ $\frac{\phi}{2}$)

 K_p is the coefficient of passive resistance:

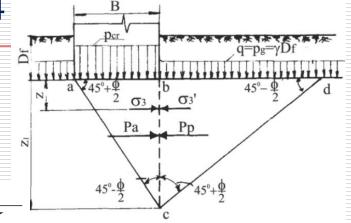
Critical pressure p_{cr}

□ The resultants Pa and Pp can be found by integration of σ_3 and σ'_3 on height *z*:

$$P_{a} = \int_{0}^{z_{1}} \sigma_{3} \cdot dz = p_{cr} \cdot z_{1} \cdot K_{a} + \frac{\gamma \cdot z_{1}^{2}}{2} \cdot K_{a} - 2 \cdot c \cdot z_{1} \cdot \sqrt{K_{a}}$$

$$P_{p} = \int_{0}^{z_{1}} \sigma'_{3} \cdot dz = \gamma \cdot D_{f} \cdot z_{1} \cdot K_{p} + \frac{\gamma \cdot z_{1}}{2} \cdot K_{p} + 2 \cdot c \cdot z_{1} \cdot \sqrt{K_{p}}$$

where:
$$z_1 = B \cdot tg(45^0 + \frac{\phi}{2}) = B \cdot \sqrt{K_p}$$



□ The equilibrium limit is found by: $P_a = P_p$. It results the value of p_{cr} as:

$$p_{cr} = \frac{1}{4} \cdot \gamma \cdot B \cdot \left(K_{p}^{\frac{5}{2}} - K_{p}^{\frac{1}{2}} \right) + q \cdot K_{p}^{2} + 2c \left(K_{p}^{\frac{1}{2}} + K_{p}^{-\frac{1}{2}} \right)$$

§ 3.3 Bearing capacities according to Romanian
norm NP 112-2014
Critical pressure p_{cr}

$$p_{cr} = \frac{1}{4} \cdot \gamma \cdot B \cdot \left(K_{p}^{\frac{5}{2}} - K_{p}^{\frac{1}{2}}\right) + q \cdot K_{p}^{2} + 2c\left(K_{p}^{\frac{1}{2}} + K_{p}^{-\frac{1}{2}}\right)$$
By denoting:

$$N_{\gamma} = \frac{1}{4} \cdot \left(K_{p}^{\frac{5}{2}} - K_{p}^{\frac{1}{2}}\right) = N_{q} = K_{p}^{2}$$

$$N_{q} = K_{p}^{2}$$

$$N_{c} = 2\left(K_{p}^{\frac{1}{2}} + K_{p}^{-\frac{1}{2}}\right)$$

Where N_{γ} , N_{q} and N_{c} are dimensionless coefficients, named **bearing** capacity coefficients. Their values are dependent on the friction angle Φ .

The p_{cr} formula could be written in a more general manner: $p_{cr} = \gamma \cdot B \cdot N_{\gamma} + q \cdot N_{q} + c \cdot N_{c}$

Critical pressure p_{cr}

□ Based on the described theory, the norm NP112 (following the EN 1997-1) uses the following formula for the bearing capacity $(p_{cr}=R/A')$: $R/A' = c' N_c b_c s_c i_c + q' N_q b_q s_q i_q + 0.5 \gamma B' N_\gamma b_\gamma s_\gamma i_\gamma$

where:

 N_{γ} , N_{q} and N_{c} are bearing capacity coefficients. $N_{q} = e^{\pi \tan \tilde{\phi}'} \tan^{2} (45 + \phi'/2)$ $N_{c} = (N_{q} - 1) \cot \phi'$ $N_{\gamma} = 2 (N_{q} - 1) \tan \phi'$, where $\delta \ge \phi'/2$ (rough base)

 s_q , s_{γ} , and s_c shape factors:

 $s_q = 1 + (B' / L') \sin \phi'$, for a rectangular shape; $s_q = 1 + \sin \phi'$, for a square or circular shape;

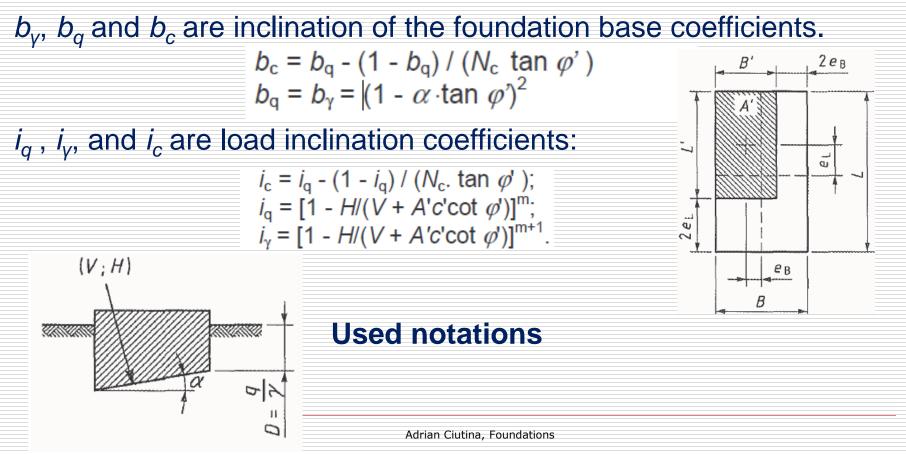
- $s_{\gamma} = 1 - 0.3 (B'/L')$, for a rectangular shape; $s_{\gamma} = 0.7$, for a square or circular shape

— $s_c = (s_q \cdot N_q - 1)/(N_q - 1)$ for rectangular, square or circular shape;

Critical pressure p_{cr}

$$R/A' = c' N_c b_c s_c i_c + q' N_q b_q s_q i_q + 0.5 \gamma B' N_\gamma b_\gamma s_\gamma i_\gamma$$

where:



Text and adaptation from:

Sisteme de fundare a Construcțiilor,

Mirea Monica, Marin Marin, Editura Orizonturi Universitare, Timişoara 2011