
Chapter 13  

TORSION OF THIN-WALLED BARS WHICH 

HAVE THE CROSS SECTIONS PREVENTED 

FROM WARPING                                         

(Prevented or non-uniform torsion) 

 

13.1 GENERALS 

In our previous chapter named Pure (uniform) Torsion, it was assumed that 
when a torque Mt0 twists the member, all cross sections were completely free to 
warp. But we remember that a rectangular cross section presents, besides the 
distortion of the cross section, a distortion of the median line. (Fig. 13.1) 

 

Fig.13.1 

From torsion the initial rectangular cross section become a hyperbolic 
paraboloid (saddle surface) inscribed into a skew rectangle. The median line (Gz 



axis) of the cross section remains in the initial plane of the cross section, so in the 
median plane of the section the specific sliding is null: (γxy)x=0 = 0 

Let’s see now a bar with an I-section subjected to torsion by two equal 
torques Mt0 acting in each end of the bar (Fig. 13.2). 

 

Fig.13.2 

Fig.13.3 

Once again, besides the cross section 
distortion (of the flanges and web) a 
distortion of the median line appears, 
but identically for all cross sections. 
That’s why we call this torsion: free or 

pure or uniform. 

Now we consider the same bar from 
Fig.13.2, but with one end fixed 
(Fig.13.3). We observe that the fixed 
support introduces a new deformation, 
the distortion of the cross section. Due 
to the fixed support a new deformation 
will appear, the distortion of the median 
line varying along the bar from zero in  



 

the fixed support to a maximum value in the free end. In this case we discuss about 
prevented or non-uniform torsion. 

The preventing of the median line distortion is in fact the preventing of the elastic 
deformations of the points from the median line along the bar axis Gx. For this 
reason new normal stresses σω will appear. Because the preventing of this 
distortion varies along the bar axis, these stresses σω also vary and for this reason 
they must be equilibrated by new tangential (shear) stresses τω.  

From this prevented deformation, in cross section will appear, only from 
torsion, 3 new distinct unit stresses: 

1. Warping normal stresses σω produced by the flanges bending (Fig 
13.4a). This bending of the flanges doesn’t introduce any known stress, because 
their distribution is equilibrated in section. Anyway, V.Z.Vlasov introduced a new 
resultant stress, fictitious, called bi-moment, noted with B. For the I-section, this 
bi-moment may be written as the moment M from each of the flanges multiplied 
by the distance between them: 

B = M (h-t)        It has an unusual unit [daN×cm2], [ kN×m2 ] 

For other type of cross sections the bi-moment B isn’t so simple to be 
interpretated. Generally the bi-moment is the distribution of axial stresses that is 
needed to reduce the warping of the section. 
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Fig.13.4 



2. Warping shear stresses τω are produced by the distortion of the 
median line of the cross section along the bar (Fig 13.4.b). The resultants of these 
stresses τω in both flanges, reduced in the shear center C define a moment of 
torsion Mω=Mts, called moment of warping (prevented or non-uniform) torsion, 

or secondary torsional moment  

3. Besides this moment Mω, exist also a moment of uniform (free) torsion 
Mtp, or primary torsional moment, which produce free (uniform) torsion. Both 
moments Mts and Mtp form the total moment of torsion Mt that subject the member:  

Mt = Mts+Mtp 

Mtp will produce torsional shear stresses τx calculated in accordance to the chapter 
of free torsion (Fig .13.4c) 

From these 3 stresses only the last stress τx is known ��� =
���

��
�. To express the 

unit stresses σω and τω, the deformations produced by prevented torsion must be 
studied. 

13.2 THE NORMAL STRESS σω  

It is accepted that the unit stresses σω and τω are constantly distributed on 
the wall thickness, equivalent to the constant distribution on thickness of the 
specific deformations. That’s why the study of the deformations is made 
considering the member composed from the cross section median line and the 
length of the longitudinal axis of the bar. 
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Let’s consider a thin-walled bar subjected to torsion (Fig 13.5.a) A point P 
from the median line may be positioned by the coordinates x, y, z from the 
principal inertia system of axis and by the curvilinear coordinate s, measured along 
the median line. 

From torsion the cross section is twisted around the shear center C with the angle φ 
(Fig.13.5.b), very small in practice. Therefore the current point P from the median 
line will have a displacement perpendicular to the radius ρ, PP’ (Fig.13.5.b). Point 
P is characterized also by the system of axis ξ Pɳ (ξ is tangent to median line and ɳ 
is perpendicular to the median line). The component ξ is, from ∆PP’P’’:  

ξ = PP” = PP’ · cosα  (1) 

From ∆CP’P: tg φ ≅ � = 	���
��

 = 	���
�

 => PP’ = ρ ·φ   (2) 

Replacing (2) in (1) 

 ξ = ρ · φ · cosα = r · φ  (3) 

At the beginning of this chapter: γxz = 0. From Cauchy’s relation:  γxz  = 
�	

�

 + 
��

��
 

We write this condition in the current point P, in the plan which is tangent to the 
median line: 

γxξ = 
�	

�
 + 

�ξ

��
  = 0 => 

�	

�
 =- 

�ξ

��
    (4) 

The cross section is constant along the bar and r doesn’t depend on x, so: 

�ξ

��
   = 

�(�×�)

��
 = r · φ’ 

In (4): 
�	

�
 = - r · φ’ 

From integration:  u =- � �r · 	φ′�ds


��
 = - φ’ � r	ds



��
   (5) 

The integration is made along the median line, starting from the point P0, called 
main sectorial point, until the current point P. 

From Fig. 13.6 we observe that: 



ω = � r	ds


��
     (6)  

ω represents twice the area described by the origin radius CP0,  the current radius 
CP’ and the median line P0P( the hatched surface). ω is called sectorial coordinate 
(or sectorial surface). 
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            Fig. 13.6 

The sectorial coordinate ω is positive when the origin radius CP0 rotates 
clockwise until the current radius CP, measured in [L2]. With (6), the displacement 
u from (5) is: 

u = - φ’ · ω   (7) 

From Cauchy’s relation: 

       εx = 
�	

��
 = - φ’’ · ω   (8) 

From Hook’s law: 

σx = E · εx = σω =>  σω = -E · φ’’ · ω   (9)    

Relation (9) is still unknown because the function of the twisting angle φ is 
unknown, as well as the position of points C and P0 that define the sectorial 
coordinate ω. 



From the static aspect  written for the cross section from figure 13.5 the 
single stress different from 0 is the torque  Mt. Making the other stresses, which 
produce normal stress σ, equal to zero (from static and strength calculus) we 
obtain: 

- From static calculus: 
N = My = Mz = 0     (10) 

- From strength calculus: 
a) N = ∫A σx·dA= ∫A σω·dA = - E·φ”∫A ω·dA = -E·φ”·Sω = 0  (11) 

As E·φ” ≠0 => Sω=0    (12) 

Sω is named sectorial static moment (or first sectorial moment of area), 
expressed in [L4]  

b) My=∫A σx·z·dA=∫A σω·z·dA=- Eφ”∫A ω· z·dA=-E·φ·Sωy = 0  (13) 
Sωy = ∫Aω·z·dA =0    (14) 
Sωy is called linear sectorial static moment, expressed in [L5] 

c) Mz = ∫A σx·y·dA = -E·φ”·Sωz = 0  (15) 
Sωz = ∫A ω·y·dA = 0    (16) 

Equations (12),(14),(16) permit the complete definitions of sectorial coordinate ω. 
Equation (14) and (16) define the coordinates of the shear center C. Equation (12) 
defines the position of the main sectorial point P0. 

  The bi-moment B can’t be defined from a static calculus, so Vlasov 
expressed it from a strength calculus, as: 

     B = ∫A σω·z·dA        (17) 

Replacing  σω  from  (9): 

B = - E ·φ” ∫A ω2 · z · dA    (18) 

Noting with: Iw =  ∫A ω2 · dA      (19)  , relation (18) is written: 

  B = - E ·Iω · φ”     (20) 



Iω is called sectorial moment of inertia and it is obtained integrating 
sectorial coordinate ω with itself. For this reason Iω is always positive and it is 
expressed in [L6]. 

From (20) we observe that the bi-moment B is function the twisting angle φ. 

Expressing E·φ” from (20) as E·φ” = -	 �
��

 , which replaced in (9) gives the final 

relation of σω: 

	� =
�

��
∙ 
  (21) 

13.3 THE SHEAR (TANGENTIAL) STRESS τω  

From the thin-walled bar from Figure 13.5a, we isolate a differential element 
through two cross sections at distance dx and at the distance s along the median 
line (Fig.13.7). 
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     Fig. 13.7 

From figure 13.7, the resultant of the normal stress σω from surface As, is: 

Is = ∫As σω · dA         (22) 

At distance dx, the resultant of σω is Is +dIs. On the longitudinal face the resultant 
of  τω (constant on thickness t), is : dLs = τω· t · dx     (23) 



From the equilibrium condition, written about x axis:  

-Is + Is + dIs – dLs = 0 => dIs = dLs  (24) 

Equation (24) shows that the increasing of the normal stress σω along x axis is 
equilibrated by the appearance of the shear stress τω in longitudinal section. The 
left term from (24) is expressed from (22) and (21) as: 

Is = ∫As σω · dA = 
�

��
 ∫As  ω · dA = 

�·	��
��

  

Sω is the sectorial static moment of the area As. Taking into account that Sω 
is constant along the member, dIs is: 

dIs = 
��
��

 ·dB  (25) 

Replacing (25) in (24) and with (23): 

  
��
��

 ·dB   =  τω· t · dx     => τω = 

��

��
	·	��

�	·	��
  

Noting with Mω = 
��

��
 = Mts  (26) , the moment of prevented torsion or secondary 

torsional moment, τω is written finally: 

  τω = 
��	·	��

�	·	��
  (27)          

13.4. THE DIFFERENTIAL EQUATION OF THE TWISTING 

ANGLE       

Both unit stresses σω (21) and τω (27) are function the bi-moment B (20) and 
respectively the moment of warping torsion Mω (26) , which depends on the 
twisting angle φ. If we find the expression of φ we may find B and Mω and then σω 
and τω .The moment of free torsion or primary torsional moment Mtp is written 
(from previous chapter): 

Mtp = θ · GIt = φ’ · GIt             (28) 

The moment of warping torsion Mω is written from (26) and with (20): 

Mω = Mts = -EIω · φ’’’                   (29) 



Introducing (28) and (29) in: 

Mt = Mts+Mtp => Mt = -EIω · φ”’ + GIt · φ’     (30) 

Derivating once again with respect to x, in the left side of the equation we find: 

��	

��
 = -mt  (31) , a similar differential relation with the first differential 

relation between stresses and loads ( 
��

��
 = -pn  or 	� 

��
 = - pt) 

Derivating (30) and with (31): 

-mt = -EIω · φIV + GIt · φ”   (32) 

We divide (32) by EIω, and we note: 

� = �!"�
#"


    (33) 

Equation (32) becomes: 

φIV – k2 · φ” = 
�	

$��
  (34) 

Equation (34) is the differential equation of the twisting angle at warping 
(prevented) torsion. The factor k is called the bar characteristic at flexural 

torsion, k2 being the ratio of the torsional rigidity in pure torsion GIt to prevented 

torsion EIω : k2 =	!"�
#"


  

The solution of the differential equation (34) is: 

φ = φg + φp  (35) 

The general solution φg is mathematically calculated: 

φg = φ0 + φ0
’· x + 

%�
��

&�
 (chkx -1) + 

%�
���

&
 (shkx - kx)   

Replacing φ0
” from (20) and φ0

’’’ from (30): 

φ0” = -	 ��
$��

		and  φ0
’’’ = 

'���()"�∙	%��

$"

 



φg = φ0 + φ0’· x – 
��

&�$��
(chkx -1) - 

�	�

&$��
(shkx - kx) + 

&�·	%�
�

&
 (shkx - kx) 

The general solution φg has the final form: 

φg = φ0 + φ0’	*&�
&

 + 
��
!"�

 (1 – chkx) + 
�	�

&!"�
 (kx – shkx)   (36) 

Replacing in (35): 

φ = φ0 + φ0’	*&�
&

 + 
��
!"�

 (1 – chkx) + 
�	�

&!"�
 (kx – shkx) + φp   (37) 

In relation (37) φ0 , φ0’, B0 and Mt0 are named parameters in origin (for x=0). 

The particular solution φp is also mathematically calculated, with Cauchy – 
Krilov method, the conditions: φ+ = φ’(0) = φ’’(0) = 0; φ’’’(0)=1 

φ4(x) = sh kx – kx (k3) 

With the changing of the variable x → x – ξ,   

φ4(x) → φ4(x - ξ) – k(x - ξ) = sh k(x - ξ)- (x - ξ) 

The particular solution: φp = � φ
�

+ 4(x - ξ) · 
��(,)

$��
 dξ 

φp  = 
-

&!"�
 � [shk�x − ξ� − k(x − ξ)]
�

+
 · Mt(ξ) dξ    (38) 

We observe that the general solution φg from (36) is function the type of support, 
while φp from (38) is function the type of loading. 

For the particular solution φp two main types of loading are presented: 

- for the load with a uniformly distributed torque mt (Fig 13.8a):  

For interval 0≤x<a : φp=0 

For interval a≤x≤b:  φp= 
.�

&�!"�
 [ch k(x-a) -1 - 

&�(�'/)�

0
] 

For interval b≤x≤l : φp= 
.�

&�!"�
 [ch k(x-a) -1 - 

&�(�'/)�

0
	 - ch k(x-b) -1 - 

&�(�'1)�

0
	] 
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    Fig. 13.8 
- for the load with a concentrate torque  Mt  (Fig. 13.8b): 

For interval 0≤x<c : φp=0 

     For interval c≤x≤l:  φp= 
��

&�!"�
[sh k(x-c) – k(x-c)] 

To determine the parameters in origin from the general solution φg, boundary 
conditions are written:  

- for simple support or hinge: 
φ0 = 0 and B0 =0 (the support prevent the rotation φ but permit the distortion 
of the median line; from this free distortion → σω = 0 → from (21) → B = 0) 

- for fixed (built-in) support: 
φ0=0 and φ0’=0 

- for a free end: 
B0 = Mt0 = 0 (or B0=B; Mt0=Mt) 

13.5 THE SECTORIAL GEOMETRICAL CHARACTERISTICS 

13.5.1 The shear center C 

To determine the position of C we must choose first an arbitrary center C1 
and an arbitrary main sectorial point P0’(Fig.13.9). 

The center C1 has the coordinates C1(yC1, zC1) 

ρ represents the radius C1P 

r is the perpendicular from C1 to the tangent in P to the median line 



 

y

z

sP0`

G

r

C1 α
ρ

ρdα

dα P(Sp)

Q(Sa)

ds

 

     Fig.13.9 

From (6) : ω1 = � r · ds
2�
2�

 

dω1 = ρ2 dα         (39) 

ρ

y-yc1

z-zc1

P(y,z)α

ρ2 = (y – yC1)2+(z – zC1)2       (40) 

y – yC1 = ρ cosα        and              z – zC1 = ρ sinα                       (41) 

The differential of (41): 

dy = -ρ sinα dα = - (z - zC1) dα 

dz = ρ cosα dα = (y – yC1)dα                   (42) 

With (40) and (42) dω1 from (39) is: 



dω1 = [(y – yC1)(y-yC1)+(z-zC1)(z-zC1)]dα 

dω1 = (y –yC1)dz – (z – zC1)dy       (43) 

For the shear center C, relation (43) is written: 

dω = (y –yC)dz – (z-zC)dy       (44) 

Extracting (43) from (44): 

dω - dω1 = (yC1 – yC)dz - (zC1 – zC)dy 

Integrating: 

ω = ω1 – (yC - yC1)z + (zC - zC1)y + (const.)D   (45) 

We use now the conditions from (14) and (16): 

Sωy = ∫A ω z dA =0     (14) 
Sωz = ∫A  ω y dA = 0     (16) 

From (16):    

Sωz = ∫A ω1 y dA – (yC – yC1) ∫A yz dA + (zC - zC1) ∫A y2 dA + D∫A y dA = 0 

But : ∫A y2 dA = Iz ;  ∫A yz dA = Iyz = 0 ; ∫A y dA = Sz = 0 

Sωz = ∫A ω1 y dA + (zC - zC1)Iz = 0      (46) 

In a similar manner, from (14): 

Sωy = ∫A ω1 z dA - (yC - yC1)Iy = 0      (47) 

From (47): 

yC = yC1 + 
3 4�5	67�

	

��
                             (48) 

From (46): 

zC = zC1 -  
3 4�8	67�

	

�

                       (49) 



Relations (48) and (49) give the expressions of the coordinates yC and zC of the 
shear center C in a principal system of axis. 

13.5.2. The sectorial moment of inertia 

Iω = ∫A ω2 dA        (50) 

Iω is obtained integrating ω with itself. Iω is always positive and the units are [L6] 

13.5.3 The sectorial static moment 

Sω = ∫A ω dA        (51) 

The integral represents the area of the sectorial coordinate ω and the units are [L4] 

13.5.4.The sectorial characteristics for thin-walled members 

In relations (48), (49), (50) and (51) the double integrals on surface A may 
be written as linear integrals (as for thin-walled members the thickness t is 
constant), written that: 

dA = t ds → ∫A dA = t ∫S ds 

t: thickness of the thin walls of the member 

The relations (48), (49), (50) and (51) become: 

 yC = yC1 + 
9 3 4�5	6��

	

��
     (48’)     

 zC = zC1 - 
9 3 4�8	6��

	

�

     (49’) 

 Iω = t ∫s ω2 ds  (50’)   

 Sω = t ∫s ω ds   (51’)                                            

    

 

 

 


