
Chapter 12  

PURE TORSION 

 
12.1 GENERALS 

 

A member is subjected to pure torsion if in any cross section of this member 

the single stress different from zero is the moment of torsion or twisting (shorter 

TORQUE). 

Pure torsion appears when exterior forces acting perpendicular to the bar axis 

produce only moments of torsion acting along the bar axis (Fig.12.1). 

 
 

    Fig.12.1    Fig.12.2 

 

The study of torsion is simple for elements with circular or ring-shape cross 

sections, using completely the hypothesis from Mechanics of Materials. For other 

types of cross sections: rectangular, sections made from laminated profiles (open 

or closed), the study is more complex, using the methods from Theory of 

Elasticity. This is a consequence of the fact that these cross sections are distortion 

during the member twist. For circular section, due to the symmetry of solicitation, 

this distortion doesn’t appear (the cross sections remain plane during the twist). 

For a rectangular section the initial plane section become after twist approximately 

a hyperbolic paraboloid (Fig.12.2). If the distortion is freely produced the torsion is 

called free or pure. If the distortion is prevented from warping we discuss about 

prevented or ununiform torsion.  



 

12.2 TORSION OF BARS WITH CIRCULAR SECTION 

 

Let us consider a circular bar, rectangular sheared by parallel circles and 

equidistant generatrix. Due to the twisting produced by the torques Mt the 

generatrix are inclined with the same angle, becoming inclined straight lines. The 

circular sections remain circular during twist and the distances between them do 

not change. In the rectangles from network only angular deformations γ appear 

(Fig.12.3). 

 
Fig.12.3 

 

The cross sections remain plane after deformation and perpendicular to the 

bar axis, so the Bernoulli’s hypothesis is again certified. 

We isolate a differential element from bar (Fig.12.4). 

 

 
Fig.12.4 

 

Considering the bottom cross section 

fixed, there will be a rotation of its 

top cross section through an angle 

dφ. The angle γ, between the interior 

generatrix BD and the twisted 

generatrix B’D, is the variation of the 

initial straight angle. As a 

consequence of the axial symmetry 

of the deformation, the relative 

displacement of point B is 

perpendicular to the radius ρ and 

tangent to the cross section contour. 

The specific slipping γ can be 

expressed from triangles ∆OBB’ and 

respectively ∆DBB’, writing the 

displacement BB’ of point B: 
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,  is the specific twist, representing the angle of twist per unit 

length of the element. 

Since the parallel circles remain at the same distance after twisting, the elongation 

of the longitudinal fibers is null. So, the specific elongations: 
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Limiting the twisted bar deformations to the elastic domain and using relations (1) 

and (2) in Hook’s laws, we have: 
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The only distinct unit stress is the tangential stress τ, acting perpendicular to the 

radius R. from (3) we can observe that τ varies directly with the distance ρ, 

measured from the bar axis; the maximum stresses occur in the outer surface of the 

bar. The sense of τ is given by sense of the torque Mt (Fig.12.5). 

 
     Fig.12.5 

 

From strength calculation the torque Mt is: 
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From (5), the specific twist θ is: 
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which, replaced in (3), gives the 

relation of the shear (tangential) 

stress τ: 
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The term GIp is the modulus of rigidity in pure torsion (or the torsional 

rigidity). G is the shear modulus (e.g. for steel 25
/101.8 cmdaNG ×= ) and Ip is the 

polar moment of inertia of a circular cross section (e.g. for circular section with 

diameter D:
32
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The maximum shear stress corresponds to the maximum radius R: 
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where: Wp is the polar strength modulus for circular sections 

The total angle of twist of a bar of length l is: 
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Relation (8) presents similarities with Navier’s formula for bent bars, but 

only from mathematical point of view. It is fundamentally different from this, 

because it can be applied only to circular cross sections. 

 

12.3. TORSION OF BARS WITH NON-CIRCULAR SECTION 

 

For other type of cross sections the relations obtained in the previous 

paragraph are no longer valid, because the hypothesis admitted to circular sections 

can’t be used for other type of cross sections. Especially the hypothesis of the 

plane sections (Bernoulli) isn’t valid anymore, because different points of the 

twisted cross sections have different displacement along the bar axis, the cross 

sections being distorted (Fig.12.2). 

The solution for these twisted bars with non-circular section was given by 

Barré de Saint-Venant. However, very good results can be obtained making an 

analogy between the phenomenon of torsion and the phenomenon of the 

deformation of an elastic membrane. The proceeding is called the analogy with the 



elastic membrane, applying the observation that both phenomenons have the same 

mathematical structure with differential equations with partial derivatives.  

Let’s assume that in a plate, a hole with the same form and dimensions as 

the bar cross section is cut. Over this hole a membrane is tensioned by a constant 

tensile force f [daN/cm2] on contour (Fig.12.6). This plate with the tensioned 

membrane becomes the lid of a box, where a gas (e.g.) is introduced under 

pressure, acting on the box walls with a pressure p [daN/cm2]. Under these two 

actions the membrane is deformed becoming a curve surface, the tensile forces 

from membrane equilibrating the exterior forces p and f.  

 
Fig.12.6 

 

It is shown that the differential equation of the deflected surface of the 

membrane has the same form as the equation which determines the stress 

distribution over the cross section of the twisted bar. These equations are 

identically if: 
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Three similitudes may be formulated: 

a. The tangent to a contour line at any point of the deflected membrane gives 

the direction of the stress τx in the corresponding point of the cross section of the 

twisted bar. 

b. The maximum slope of the membrane in any point is equal to the magnitude 

of the shear (tangential) stress τx in the corresponding point of the twisted bar. 

c. The torque Mt of the twisted bar represents twice the volume included 

between the surface of the deflected membrane and the plane of its outline. 

 



12.3.1 THE NARROW RECTANGULAR CROSS SECTION 

 

A rectangular section is narrow if the ratio 5≥bh (Fig.12.7). We can neglect the 

influence of the short sides, so in the membrane analogy the deflected shape of the 

membrane may be considered as a cylindrical surface having the generatrix parallel 

to the long sides of the narrow rectangle. 

 

 
Fig.12.7 

 

We isolate a strip of unit width (Fig.12.7b) and we represent in section the 

obtained arc (Fig.12.8a). 

 

 
Fig.12.8 



The arc has no rigidity in bending, so it can’t take over bending moments. 

We write the expression of the null bending moment in an arbitrary point Q for a 

half of arc (Fig.12.8b): 
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Using condition (10), we find: 
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Equation (11) is the equation of a parabola of second degree, representing the 

equation of the surface of the deflected membrane. 

The three similitudes may be written: 

a. The direction of τx is parallel to the long sides of the narrow rectangle 

(Fig.12.7a) 

b. The value of τx is the slope of the membrane: 
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The stress τx has a linear variation on thickness, with maximum values at 
2

b
y ±=  

(Fig.12.7a). 

c. The torque Mt is twice the volume: 
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with the area of the parabolic surface of the deflected membrane: 
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The torque Mt is: 
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and the specific twist is: 
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It is the moment of inertia at free (uniform) torsion for the narrow rectangular 

sections. 

Replacing (14) and (15) in (12) we may calculate the maximum tangential stress τx 

max , for 
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Wt is the strength modulus at pure torsion for the narrow rectangular cross 

sections. 

 

12.3.2 THE BROAD RECTANGULAR CROSS SECTION 

 

A broad rectangular cross section is the one that has the ratio 10<bh (more 

severe 5<bh ) (Fig.12.7).   

The tangential stresses distribution is different from the one obtained for the 

narrow rectangle. The maximum stresses τx max occur in the middle of the longer 

sides h (Fig.12.9) and zero in the centroid G and in corners. 

 

Using similar relations, the 

maximum stress τx max is, with (16): 
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with: 
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b and h: the shorter, respectively 

the longer side of the rectangle 

α: a numerical factor depending 

upon the ratio h/b 

 The tangential stress on the shorter 

side is: 
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and the angle of twist per unit 

length θ is:        



Fig. 12.9 
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α, β and γ: are factors given in the table below, for several values of the ratio 

h/b. 

 
h/b 1,0 1,5 1,75 2,0 2,5 3,0 4,0 5,0 6,0 8,0 10,0 ∞ 

α 0,208 0,231 0,239 0,246 0,258 0,267 0,282 0,292 0,299 0,307 0,313 0,333 

β 0,141 0,196 0,214 0,229 0,249 0,263 0,281 0,292 0,299 0,307 0,313 0,333 

γ 1,000 0,859 0,820 0,795 0,766 0,753 0,745 0,744 0,743 0,742 0,742 0,742 

 

12.3.3 SECTIONS COMPOSED FROM NARROW RECTANGLES 

(SIMPLE CONNEX SECTIONS) 

 

Equations (15) and (17) used in (14) and (16) derived for a narrow 

rectangular cross section, may be used also in other cases in which the width of the 

cross section is small (cross section made from rolled profiles I, U, L, or composed 

section which have the median line open). 

 
Fig. 12.10 

 

Let’s assume we have a T shape 

cross section (Fig.12.10), each 

rectangle being twisted with the 

same angle θ. 

Each part of the cross section, which 

is a narrow rectangle, overtakes a 

part of the torque Mt : Mt1 and Mt2. 

From equilibrium condition: 
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From the hypothesis of the cross 

section undeformability: 
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Expressing each angle of twist with 

(14), relation (22) is written: 
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Where with (15): 

It = It1 + It2 = 
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�

�
	+ 

��∙��
�

�
 



From (23): 

Mt1 = Mt · 
���
��
		and Mt2 = Mt · 

���
��
		 

and the maximum tangential stress in every element  

τx max 1 = 
���

���
· t1 ;   τx max 2 = 

���

���
· t2   

or replacing Mt1 and Mt2 : 

τx max 1 = 
��
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Generally, for a cross section which can be decomposed in n narrow rectangles, the 

maximum shear stress τx max in the narrow rectangle i, is: 

τx max i = 
��

��
· ti           (24) 

It can be observed that the maximum stress τx max for the entire cross section will be 

in the rectangle with the greatest thickness tmax: 
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which represents the strength modulus at torsion for simple connex sections,  the 

final formula of the maximum shear stress τx max is: 

 

τx max = 
��
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    , identically to relation (16) 

 

The angle of twist per unit length θ will be calculated with (14): 
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Where It is the moment of inertia at free torsion, for simple connex sections: 
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n: the number of narrow rectangles which compose the cross section 

For rolled profiles (IPN, UPN, angle with equal or unequal legs) caused by the 

reentrant corners (racordarilor colturilor interioare), the formula of It is corrected 

as: 
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where : η is a coefficient calculated from experimental tests. 

 

Example for some types of cross sections: 
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For composed welded cross sections:   η = 1 

 

 



12.3.4 SECTIONS MADE FROM NARROW RECTANGLES, BUT 

HAVING A CLOSED MEDIAN LINE (DOUBLE CONNEX SECTIONS)  

 
The membrane analogy is again applied. In this case the cross section has 

two contours and the exterior and interior boundaries of the membrane from 

Fig.12.11 are located in different horizontal planes. 

The device used in membrane analogy (Fig 12.6) is modified as follows: the 

hole made in the lid of the box will have the same shape and dimension as the 

cross section exterior contour (Fig 12.11). 

 
 

Fig. 12.11 
 

It is made another plate having the shape and dimension of the cross section 

interior contour. This plate may slip on vertical direction and a balance weight 

will equilibrate the plate weight. The space between plate and the box lid is 

covered by the elastic membrane. Under the pressure p[daN/cm2] the plate riches 

the new position to a certain height x. The thickness ts is small and the curvature of 

the membrane may be neglected, so the deflected surface of the membrane will be 



a conical surface. The slope of the membrane surface is constant over the thickness 

ts and based on the second similitude, the tangential stresses τx will be uniformly 

distributed on the thickness ts, and they are given by the slope: 

 ��� =
�

��
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The shear stress τx direction is tangent to the median line and along the 

circumference it is inversely proportional to the thickness ts  of the wall. 

Using the third similitude, the torque Mt is: 

  Mt = 2V = 2·Ω·x        (29) 

where Ω: is the area bounded by the median line of the cross section 

(Fig.12.11) 

From (29) we may write x : 

	 =
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which, introduced in (28) gives us the formula of τx, called also the relation of 

Bredt (dated from 1896): 
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We observe immediately that the maximum shear stress τx max correspond 

to the smallest thickness tmin: 
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or:  �� =
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  , again relation (16) 

with:  �� = 2
 ∙ ���	                  (31) 

Wt: the strength modulus at torsion for double connex sections 

To determine the angle of twist per unit length θ, first we have to determine 

the formula of It. That’s why we isolate the plate, cutting fictitiously the membrane 

with a horizontal plane (Fig 12.12) 

 
 

Fig.12.12 

We observe that, due to the sliding of the plate only on vertical direction (the 

plate remains horizontal) and due to the thickness ts which is variable along the 

median line s, in membrane are developed tractions f also variable, in what 



concerns their magnitude and their direction. Writing the equilibrium condition on 

vertical direction: 
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Replaced in (32): 
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Replacing relation (10): 
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 = 2Gθ  in  (33): 
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and the angle of twist θ will be : 
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Writing θ with formula (14): 
t

t
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M
=θ  , we may write the moment of inertia at free 

torsion (for double connex sections):      
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If the thickness ts = t = constant => It = 
�Ω�

·�
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s: the length of the median line 

If ti is constant on si =>  �� =
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∑
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      (35) 

si: the length of the median line i on which the thickness ti is constant 

 

12.4 APPLICATION TO PURE TORSION 

 
For the following bar having the cross section 1-1 (on the interval of 1.6m length the 

section is cut, resulting section 2-2) make: 

a. Mt diagram 

b. Calculate the geometrical characteristics in torsion for both sections 

c. Calculate the load parameter Mt0 from strength and rigidity conditions, if 

τmax=1300 daN/cm2 and θmax=0.5 0/m (G=8.1×105daN/cm2) 

d. With Mt0 calculated represent the shear stress τ diagram on each section, 

inscribing the maximum value 

e. With Mt0 calculated determine the total rotation of the bar (G=8.1×105daN/cm2) 

 



 
 

a. Mt diagram: 

 
 

b. The geometrical characteristics It and Wt for each section: 

 

- section 1-1: 

 
[mm] 

 

Surface Ω: 

Ω = 25.2·23+2·23.9·8.025 = 963.2cm2 

 

Strength modulus (31): 

Wt =2·963.2·0.95 = 1830cm3 

 

Moment of inertia (35): 

It =	 �∙���.
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=36566cm4 

 

 



- section 2-2: 

 
[mm] 

Moment of inertia (27) with η=1: 

It=	�
�

8.5 ∙ 2.5� ∙ 4 + 21.4 ∙ 0.95� ∙ 2 +

+23 ∙ 1.2� ∙ 2� =215.8cm4 

 

Strength modulus (25): 

Wt =

��. 


.�
=86.32cm3 

 

 

 
c. The load parameter Mt0 from strength and rigidity conditions: 

 

From strength condition: �� ≤ ���� ∙�� 

From rigidity condition: �� ≤ ���� ∙ ���   

θmax=0.5 0/m=0.5·
�

���
∙

�

���
= 8.7266 × 10	
rad/cm 

-for section 1-1: 

3��� · 10
� ≤ 1300 ∙ 1830	→ ��� ≤ 79.3	kNm 

3��� · 10
� ≤ 8.7266 × 10	
 ∙ 8.1×105· 36566	→ ��� ≤ 86.16	kNm 

-for section 2-2: 

0.1��� · 10
� ≤ 1300 ∙ 86.32	→ ��� ≤ 112.22	kNm 

0.1��� · 10
� ≤ 8.7266 × 10	
 ∙ 8.1×105· 215.8	→ ��� ≤ 15.25	kNm 

The load parameter Mt0 is the minimum value from the four values calculated above: 

 ��� = 15.25	kNm 

  

d. The maximum values of the shear stress τmax for each section are: 

 

 τmax 1-1 =
�∙��.
�∙�!�

� �!
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 τmax 2-2 =
!.�∙��.
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= 176.7	daN/cm2 

 

Shear stress τ diagrams for 

section 1-1: 

 



 

Shear stress τ diagram for 

section 2-2: 

 
 

e. The total rotation of the bar:  � =
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5
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+
0.1 ∙ 15.25 ∙ 10� ∙ 160
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5
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= 0.01025��� = 0.58! 


