
Chapter 9 

BIAXIAL SHEARING 

 
9.1 DEFINITION 

 

As we have seen in the previous chapter, biaxial (oblique) shearing 

produced by the shear forces Vz and Vy, appears in a bar only accompanied 

by biaxial bending (we may discuss about pure oblique shearing only 

eventual in a cross section, but not in the entire bar). For this reason the 

types of loading which produce oblique shearing are the one presented in 

chapter 8 (Fig.8.2 and Fig.8.3): 

a. The loads applied parallel to Gz axis will produce the shear force Vz 

(Fig.8.2), respectively those parallel to Gy axis will produce the force Vy. 

b. The resultant shear force V from section (Fig.8.3) will be decomposed 

into the components: 
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So, in both case of loading, each shear force will generate on turn 

shear ( tangential ) stresses τxz in the vertical elements (the webs) of the cross 

section and τxy in the horizontal elements (the flanges) of the cross section: 
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and finally, from superposing: 
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9.2 CROSS SECTIONS SYMMETRIC WITH RESPECT TO 2 

PERPENDICULAR AXES (PRINCIPAL AXES) 

 

9.2.1 Rectangular cross section 

 

As we have seen at straight shearing (Chapter 8) the shear force Vz 

produced a tangential stress τxz having a parabolic distribution along the 

rectangle side which is parallel to the shear force Vz. Corresponding to this 

observation, the shear force Vy will produce a shear stress τxy having also a 



parabolic distribution, but now, along the rectangle side that is parallel to the 

shear force Vy.  

 
Fig.9.1 

 

As we see in figures 9.1 and 9.2, the tangential stress τxz along the rectangle 

side of length h has the maximum value along Gy axis:  
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while the tangential stress τxy has the maximum value along Gz axis: 
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Fig.9.2 

 

From the distribution of the tangential stresses presented in a 

perspective view in figure 9.2 we may conclude that the maximum values  of 

both shear stresses τxz max and τxy max are superposed only in the cross section 

centroid, where: 
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9.2.2 The double T (I) section, made from narrow rectangles 

 

As we know from straight shearing, the shear force Vz will produce 

the shear stress τxz parallel to Gz axis, having a parabolic distribution and a 

maximum value in the neutral axis Gy (figure 9.3). From the same shear 

force, in both flanges shear stresses τxy will exist, parallel to Gy axis, having 

a linear distribution and maximum values in the web vicinity (Fig. 9.3). 

 

 
Fig.9.3 

 

Similarly the shear force Vy will produce the shear stress τxy parallel to 

Gy axis (Fig. 9.3), with a parabolic distribution and a maximum value in the 

neutral axis Gz (practically, the maximum values of τxy are in the vicinity of 

the web, where the cross section width is much smaller, being the flange 

thickness). In the cross section web τxz produced by Vy will be zero (the static 

moment Sz = 0). For this reason the shear force Vy may be considered to be 

divided into 2 equal parts Vy/2 to each flange. We may admit a maximum 

value for the shear stress τxy produced by Vy corresponding to the narrow 

rectangle: 
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Finally, the maximum shear unit stresses are: 
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9.3 CROSS SECTIONS SYMMETRIC WITH RESPECT TO A 

SINGLE PRINCIPAL AXIS 

 

9.3.1 Simple connex cross section 

 

If the cross section is a monosymmetrical double T (I) section, the shear 

stresses distribution is similarly to the one presented in the previous 

paragraph, in figure 9.3. The difference is that the shear force Vy, which pass 

through the shear center C (whose position is unknown, yet), is now 

decomposed into 2 different components Vy
s
 and Vy

i
 (figure 9.4) inversely 

proportional to the distances hs and hi measured from C to the median lines 

of the flanges: 
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Fig.9.4 

 

As this proceeding impose first the determination of the shear center 

position (presented in the next paragraph) we can’t calculate the shear 

stresses τ from Vy as for the double symmetrical I section. We may calculate 

these shear stresses applying Juravski’s formula: 
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In the above formula the static moment and the moment of inertia are written 

with respect to the neutral axis Gz. 



Finally, the maximum shear unit stresses τ are calculated in the same manner 

adding the stress from Vz to the one from Vy. 

If the monosymmetrical section has two webs (figure 9.5) we shall 

proceed in the same manner, writing Juravski’s formula for τ, separately 

from each shear force Vz and Vy. The shear stresses distribution for this cross 

section is presented in Fig. 9.5. 

 
 

Fig.9.5 

 

9.3.2 Sections of an arbitrary shape 

 

In this paragraph we shall see an interesting section, presented in what 

concern the oblique shearing. This is the angle with equal legs (Fig. 9.6). 

 
Fig.9.6 



 

As Juravski’s formula was demonstrated for the compound 

solicitation of shearing with bending, the formula is applied in the principal 

system of axis yGz of the cross section. So, whatever is the type of loading 

(fig.8.2 or 8.3), the shear forces will act in the shear center C (situated to the 

intersection of the median lines of each leg) parallel to Gy and Gz axis, the 

principal axis passing through the centroid G, but rotated with 45
o

 with 

respect to the central system of axis zGy  (figure 9.6). 

Now, the median lines aren’t parallel with neither Vz nor Vy. That’s 

why both shear stresses z
V

x
τ and y

V

x
τ will have a parabolic distribution along 

each leg. The maximum shear stress z
V

xmax
τ will be in the angle corner, as the 

neutral axis Gy, when calculating z
V

x
τ , intersects the cross section median line 

in its corner. Similarly to this, the maximum shear stress y
V

xmax
τ will be in the 

points of intersection (points A and B) the neutral axis Gz (necessary when 

calculating y
V

x
τ ), with the cross section median line (figure 9.6). 

 

To prove the parabolic distribution of both 

shear stresses z
V

x
τ and y
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τ , we consider a calculus 

level s. The distances from the centroid of the 

hatched area (figure 9.6) of length s to the 

principal system of axis yGz, are: 
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The static moments with respect to each principal axis, are: 
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As we may see from the above expressions, the variable s is at the 

second power in both static moments, what prove the parabolic distribution 

of z
V

x
τ and y

V

x
τ . 

Finally, in a certain section s the compound shear stress will be: 
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9.4 THE POSITION OF THE SHEAR (TORSIONAL) CENTER  

 

The shear center C is the significant point from the cross section, in 

which the shear stresses τ are reduced. Its exact position is yet unknown, 

what we know until now is that the shear center is located somewhere on the 

symmetry axis, for the monosymetrical sections (if the cross section has 2 

symmetry axis the shear center C is in their intersection, so it is identically 

with the centroid G). 

 

9.4.1 Channel ( U ) section 

 

We consider a channel (U shape) section with thin walls (Fig. 9.7). We 

admit that the shear force Vz pass through the shear center C, so the section 

is subjected only to uniaxial shearing. The torsion moment is null: 
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We represent the shear stresses distribution in the cross section walls. As we 

know, from Vz we represent the typical parabolic distribution of τxz in the 

cross section web, while in flanges the linear distribution of τxy is drawn. 

Along each median line the resultants of these shear stresses, R1 and R2, are 

also represented (figure 9.7). 

 
 

Fig.9.7 



 

 

Assuming Gy is the neutral axis (the forces plan is parallel to Gz), the 

significant values of τ are: 
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The resultants of the shear stresses R1 and R2 are calculated as the volume of 

each τ diagram (taking account that, on the narrow rectangle thickness, τ is 

constant, having a uniform distribution): 
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With this formula, each resultant is: 
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In the above expression of the moment of inertia Iy the second term is very 

small and it was neglected. This moment of inertia is replaced in the 

expression of R1 and finally we obtain:  
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We write the condition that the torsion moment with respect to the shear 

center C, is null: 
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After replacing R1 and R2 we obtain the distance η measured from the 

median line of the web to the shear center (Fig. 9.7): 
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9.4.2 I section with unequal flanges 

 

We want to compute the shear center position for the cross section 

presented in paragraph 9.3.1 (Fig.9.4). The shear center C is located on the 

symmetry axis Gz, to the distances hs respectively hi with respect to the 

median line of the superior respectively inferior flange (Fig.9.8). 

 

 
 

Fig.9.8 

 

For straight bending with respect to Gz axis, which is the neutral axis, the 

corresponding shear force that produces the straight shearing is Vy. As we 

have seen in paragraph 9.3.1, Vy is decomposed in Vy
s
 and Vy

i
, which give a 

parabolic distribution for τxy in each flange (Fig. 9.8). τxz from Vy in the cross 

section web is null (the static moment Sz=0). 

The maximum values of τxy in each flange are: 
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The resultants R1 and R2 are fractile from Vy, respectively Vy
s
=R1 and Vy

i
=R2 
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In the above relations Iz1 and Iz2 are the moments of inertia of each 

flange, with respect to the neutral axis Gz. 

The torsion moment with respect to the shear center C, is null: 
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Replacing hs and R1 and R2 we get: 
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Replacing in the above equation, we finally find the shear center position, 

through the distances: 
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9.4.3 The calculation steps used to determinate the position of the 

shear center C 

 

We explain each step which should be followed in order to find the position 

of C, on the cross section with 2 webs from paragraph 9.3.1 (Fig. 9.9). 

 

a. We position the shear center C on the symmetry axis (in our example 

Gz axis) 

b. In C we apply a shear force perpendicular to the symmetry axis (Vy in 

our case) 

c. From this shear force we establish the direction of the shear stresses 
flow in all narrow rectangles and we represent the diagrams of the 

shear stresses τx, τxy with parabolic distribution in the cross section 

flange, respectively τxz with linear variation in the cross section webs, 

but having different orientation and signs. 

d. We compute all the significant values of the shear stresses τx from 

these diagrams. For our cross section we apply Juravski’s formula 
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Fig.9.9 

 

e. We compute the resultants Ri corresponding to each diagram τi 

represented on the narrow rectangle of thickness ti. We apply the 

formula:
ii
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, where Aτi is the area of τi diagram. 

f. We write the condition that the torsion moment with respect to the 

shear center C, is null. For our cross section (Fig. 9.9): 
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g. From this condition we find the position of the shear center C given 
by this distance η. 

 

If the cross section has no symmetry axis, the same steps must be followed, 

but separately on each axis, first from Vy with Gz the neutral axis and then 

from Vz with Gy the neutral axis. Finally we shall obtain 2 coordinates for 

the shear center C: η and ζ. 

  

! All the calculations must be made in the principal system of axis yGz. 



9.5 APPLICATION TO BIAXIAL BENDING WITH SHEARING 

For the simple supported beam with the static scheme and the cross section 

from the figure bellow calculate: 

a. diagrams of stresses 

b. the strength verification at bending (��	��� = 2200���/���). In the 

critical sections at bending the neutral axis and the normal stress diagram σx 

will be represented 

c. in section B’ (B left) the shear stress diagram τx with the resultant values 

at the levels 1-1 and 2-2 

 

 

 

The diagrams of stresses: 



 

The critical sections at bending are: 

- section E, where My max = 126.56kNm and Mz = 123.75kNm, so a section 

of biaxial bending 

- section B, where My = 0 and Mz max = 495kNm, so a section of uniaxial 

bending 

With the second moments of area Iy = 21129cm
4 
and Iz = 38975cm

4
, the 

maximum normal stresses and the neutral axis are: 

- in section E: 
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- in section B: 
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In section B’ the shear forces: Vz max = -112.5kN and Vy max = 165kN 
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