
Chapter 8 

BIAXIAL BENDING 

 
8.1 DEFINITION 

 

A cross section is subjected to biaxial (oblique) bending if the normal 

(direct) stresses σx from section are reduced to two bending moments My and 

Mz. Generally oblique bending is accompanied by oblique shearing, when 

the shear stresses τx are reduced to two shear forces Vz and Vy. If the shear 

forces Vz = Vy = 0, we discuss about pure oblique bending. 

The positive convention of the vectors moment My and Mz is presented 

in Fig. 8.1. From figure we may conclude that the vectors moments My and 

Mz, which are included in the cross section plan, are positive if My acts 

inversely principal axis Gy, while Mz acts in the positive direction of 

principal axis Gz. In other words My and Mz are positive, when the resultant 

moment Mi stretches (tensions) the cross section first quadrant. 
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Fig.8.1 

 

8.2 MODE OF LOADING 

 

There are 2 main modes of loading which produce biaxial bending: 

a. The loads are applied perpendicular to the torsion axis C
~

x , in two plans 

which are parallel to the principal plans xGy and xGz. 



We assume that for a certain cross section the systems of axis of the 

significant centers G and C are shown in Fig. 8.2. 
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Fig. 8.2 

 

! The forces lines must pass through the shear center C in order to have only 

oblique bending with shearing. Otherwise this compound solicitation is 

accompanied by torsion in that cross section. 

From Fig. 8.2 we may conclude: 

a.1 The vertical forces Pz will produce the shear force Vz acting in the shear 

center C, and the bending moment My acting in the centroid G.  

The forces plan is 
~

xC
~

z and the forces line in any cross section is C
~

z  axis. 

The neutral axis for bending is Gy axis.  

a.2 The vertical forces Py will produce the shear force Vy acting in the shear 

center C, and the bending moment Mz acting in the centroid G.  

The forces plan is 
~

xC
~

y and the forces line in any cross section is C
~

y  axis. 

The neutral axis for bending is Gz axis.  

 

b. All forces act in a plan that passes through the shear center C (which 

contains 
~

x  axis), but it is inclined with respect to the principal plans xGy and 

xGz with an angle α (Fig. 8.3). 
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Fig. 8.3 

 

The forces plan is inclined with the angle α, and the intersection of this plan 

with any cross section defines the forces line which is also inclined with the 

angle α with respect to C
~

z  axis. Due to the forces acting in this inclined 

plan, shear forces V and bending moments M will subject any cross section. 

This case of loading may be reduced to the first one ( a. ), decomposing 

from the beginning the forces P with respect to Gy and Gz axis: 

 αcosPP
z
=   and  αsinPP

y
=  

As in the first case of loading, Pz will produce the shear force Vz and the 

bending moment My, while Py will produce the shear force Vy and the 

bending moment Mz.  

In the first case of loading the ratio 
z

y

M

M
isn’t constant along the bar, so 

that the deformed axis will be a skew curve in space. In the second case of 

loading the ratio 
z

y

M

M
is constant in any cross section and the deformed 

axis will be a plane curve, but situated in a different plan with respect to the 

forces plan. 

 

8.3 THE NORMAL STRESSES �
�
	IN OBLIQUE BENDING 

 

We consider a simple supported beam subjected to pure oblique bending, on 

the interval CD from this beam (Fig. 8.4). The forces P, inclined with an 



angle α with respect to Gz axis, produce between C and D sections only a 

bending moment M (without shear force), having a constant distribution on 

C-D interval. For simplicity we assume the cross section is symmetrical 

double, so G ≡ C and the systems xyz ≡
~

x

~

y

~

z , are identically. 
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Fig.8.4 

 

In cross section the plan of action the bending moment is A-A (Fig. 8.5), 

inclined with the angle α with respect to Gz axis. Also, the same angle is 

between the vector moment M and Gy axis (Gy and Gz are principal axis). 
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Fig.8.5 



The components of the bending moment M, with respect to Gy and Gz axis, 

are: 

 αcosMM
y
=   and  αsinMM

z
=       (8.1) 

They produce bending in plans xGz, respectively xGy. Each moment will 

generate normal stresses σx , calculated with Navier’s formula: 
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Taking into account the hypothesis used in Mechanics of Materials, the 

hypothesis of the small deformations and the material has a linear elastic 

behaviour, the normal stresses σx may be calculated superposing the effects 

of the two straight bending (from My and Mz): 
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The positive moments My and Mz are those which produce tensional stresses 

σx in any point from the first quadrant of the principal system of axis yGz 

(positive y and z coordinates). 

Replacing My and Mz from (8.1) in the relation of σx (8.2), we get: 
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The neutral axis equation is obtained from the condition σx = 0. As, in (8.3) 

the bending moment M ≠ 0, the single solution is: 
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 , or: y
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Replacing: α

α

α

tg
M

M

M

M

y

z
==

cos

sin
, in (8.4), we obtain another form for the 

neutral axis equation: 
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Equations (8.4) and (8.5) represent the equation of the neutral axis in case of 

oblique bending, which can be written shorter: 

 ymz ⋅−=          (8.6) 

where m: represent the neutral axis slope 
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Replacing (8.7) in equation (8.6), we obtain: 

 ytgz ⋅−= β          (8.8) 



This final equation (8.8) shows that the neutral axis is a straight line passing 

through the centroid G(0,0) and being inclined with the angle β with respect 

to Gy axis. 

! Note that in case of oblique bending, the neutral axis does no more 

coincide with the support of the moment vector M (M doesn’t act around the 

neutral axis, because 
z

y

I

I
tgtg ⋅≠ αβ ). Exception to this observation, are the 

cross sections having the moments of inertia αβ tgtgII
zy

=⇒=  (as for the 

square or circular cross sections). 

! As αβ ≥ , the neutral axis is no more perpendicular to the forces line. 

To trace the neutral axis we either determine the angle β (
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or we define the second point Q (figure 8.6) through which the neutral axis 

will pass (the first point is the centroid G), of abscissa 1 and ordinate –m: 

Q(1,-m). 
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Fig.8.6 

 

 ! Note that the neutral axis passes always through the quadrant limited by 

the two vectors moment My and Mz.   

After tracing the neutral axis, two parallels to the neutral axis which are 

tangent to the cross section contour, are also traced. These two parallels 

(fig.8.6) will pass through the extreme points 1(y1,z1) and 2(y2,z2). 

The normal (direct) stress σx diagram is drawn considering the reference line 

(which is even the cross section) perpendicular to the neutral axis and having 

extreme values, maximum tensile stress and maximum compressive stress, 

in point 1, respectively 2 (fig.8.6): 
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As in practical calculations we have to check the strength capacity of the 

most subjected cross section, meaning that the strength condition R
x

≤
max
σ  

must be verified, we are interested mainly in computing the maximum 

normal stress (tension or compression, in case of steel cross sections): 
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This means that we shall work in the critical (most dangerous) sections, 

where My and Mz have maximum values. If My and Mz aren’t maximum in 

the same section we have to consider 2 critical sections: 

 Section 1: My max. and Mz afferent  

 Section 2: My afferent and Mz max. 

The strength condition will be: 

 ( ) R
xxx

≤=
21max

,max σσσ        (8.10) 

In case of sections that may be inscribed in a rectangle (Fig.8.7) and if there 

is material in the corners of rectangle (ex: rectangle, double T(I) shaped 

cross sections, or any other composed section which form a rectangle) we 

may determine that normal stresses without determining first the neutral axis 

position. The maximum stresses ��	��� will be, no doubt, in the cross 

section corners:  

 ��	��� = ±
��

��

±
��

��
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Fig.8.7 


