
Chapter 7 

UNIAXIAL BENDING WITH SHEARING  

IN STRAIGHT BARS 

7.1 GENERALS 

 

Bending of straight bars is the result of the action of transversal exterior 

forces and couples which produce bending moments in cross sections (Fig.7.1). As 

a consequence of this action, the longitudinal bar axis become curve. The bent bars 

are called beams.  

Fig.7.1 

 

If the forces plan (xGz or/and xGy) contains the longitudinal bar axis x, 

reducing the stresses in the centroid G, we shall obtain the bending moments 

M�, M� and the shear forces Vz and Vy characteristic to a compound solicitation, 

represented in cross section with their positive convention (Fig.7.2). 

 

 
Fig.7.2 



 

 

We may have simple or compound solicitations: 

Uniaxial (straight) bending: only one moment acts in the cross section: �� 	��	�� 
Biaxial (Oblique) bending: both moments �� 	���	�� act in the cross section 

Pure bending: when the shear forces in the cross section are missing: Vz = Vy = 0; 

it can be straight or oblique pure bending 

Bending with shearing: when all stresses �� 	���/��	��  , Vz and/or Vy act in the 

cross section; it can be straight or oblique bending with shearing 

 

Examples: 

 

a) 

 

 

 

 

 

 

 

 

A prismatic member subjected to equal and opposite couples acting in the same 

longitudinal plane. On the entire length the member is subjected to pure bending. 

 

b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A prismatic member subjected by two equal point forces acting to an equal 

distance to supports. In this case, only in the central zone (between the loads P) 

pure bending occurs. On both length “a’ from bar, straight bending with shearing 

subject the bar. The forces P act in the forces plan, and the intersection of this plan 

with the cross section is called the force line (f.l.). 

 

7.2 PURE BENDING 

 

The previous example a) is the case of a straight bar subjected to pure bending 

(only the bending moment �� 	acts in any cross section of the bar, the sum of the 

components of the forces in any direction is zero), but only if the bar self-weight is 

neglected. 
 For a cross section subjected to pure bending (Fig.7.3), the stresses are: 

Fig.7.3 
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7.2.1. Geometrical aspect 

 

We shall use the same rubber model as the one used for axial solicitation 

(centric tension). But in this case the prismatic model will be subjected as in 

example a) to equal and opposite couples	�� (Fig.7.4).  

 

 

 

 

 

 

 

 

 

 

Fig.7.4 



The same network of straight lines is traced on the lateral surface of the 

model. The lines are parallel and equidistant. 

Admitting that, what we see on the lateral surface is valid in all the planes 

which are ‖ to this surface, instead of vertical lines we discuss about cross sections 

and instead of longitudinal lines we discuss about longitudinal sections. 

After deformation, the longitudinal sections initial straight become curve, 

they bend uniformly to form a circular arc, the length of the top part decreases and 

the length of the bottom part increases. The network remains still rectangular 

because the cross sections initial perpendicular to the longitudinal sections, remain 

plane and perpendicular to the curved longitudinal section (strips), so the 

hypothesis of Bernoulli is valid. 

Passing from lengthening of the longitudinal strips to their shortening is 

made continuous on the model height. This means that it will be a longitudinal 

strip that even if is curved it doesn’t change its length.  It is a neutral surface that 

is parallel to the upper and lower surfaces and for which the length does not 

change. This strip is called neutral strip. The deformed axis of the bent beam is 

called deformed fiber or line. The intersection between the neutral strip and cross 

section is called neutral axis. 

We observe also that the initial straight angles of the network remain straight 

after deformation, what means that the specific sliding is null: 

��� = ��� = ��� = 0 

In what concern the specific elongations ��, we isolate a differential element 

from the deformed beam, of length dx (Fig.7.5). 

 

Fig.7.5 

On figure 7.5 , ρ represents the radius of curvature of the neutral strip (constant 

on dx) and point O is the center of curvature. 



The elementary sections a-a, b-b perpendicular to the longitudinal bar axis 

before deformation form an elementary angle dφ between them, after deformation. 

After deformation the neutral strip AB of length dx is curved, but it will have 

the same length AB = A’B’= dx = ds = ρ dφ. 
At a level z the lengthening of a fiber can be written from the resemblance of 

the curvilinear triangles OA’B’ and B’ED’: 

		ρ
z

=
dx

∆dx
	→ 	∆�� =

z · dx

ρ
 

The specific elongation	��: 

		�� =
∆�	
�	 =

�

  

  

As, in the above relation of �� the coordinate z appear at 1
st
 power, this 

shows that the strain �� varies linearly on cross section, the stresses and strains 

being negative (compressive) above the neutral plane respectively positive 

(tension) below it . 

 The other two strains εy and εz are neglected: 

          �� = �� = −��� = −
�
� �  ≅ 0  

 

 7.2.2. Physical aspect 

 

 Admitting that the solicitation takes place in the linear elastic domain, the 

law of Hooke is valid: 

      
 = � · �		and 	� = � · �	 → 	��� = ��� = ��� = 0 

	
� =
� · �
� ≠ 0 

						
� = 
� = 0 

 So, the single distinct unit stress is the normal stress		
� which, similarly to 

the specific strain	��, varies linearly on the cross section height, being 0 in the 

neutral axis (n.a.) and maximum (tension and compression) in the extreme fibers. 

On the bar width, at any level z, 
� is constant (uniformly distributed). 

 The relation of 
� can’t be yet used, because: 

1. We don’t know the radius of curvature ρ 

2. We don’t know the position of the neutral axis. 

 

7.2.3. The static aspect 

 

We write the stresses from a static calculus (from exterior) and from a 

strength calculus (from interior). For our solicitation the single stress is �� = ��, 

�� =
z

ρ
 



the other two (which produce σ	) � = �� = 0. These are the stresses from 

exterior (static). From interior we write the strength definition of these stresses: 

1) � = � 
�� �� = 	 � �
�� �� =


� � �� �� = 0 

As 

� ≠ 0 (�	can’t be infinite for 


� = 0,	because this means that the bar remains 

straight) => �� = � �� �� = 0		(�) 

2) �� = � 
�� �� = 	 � �
�� �� =


� � �� �� = 0 

=> ��� = � �� �� = 0			��� 

Relation (a) shows that the first moment of area �� with respect to the 

neutral plane is zero. Therefore, the neutral surface must pass through the section 

centroid, what means that Gy axis is a central axis. 

Relation (b) shows that the centrifugal moment of inertia Iyz is null, so the 

system yGz is the principal system. From these two observations, we may 

conclude that yGz is the principal system of axes, with the origin in the centroid 
G and the neutral axis is Gy axis (when the force line is Gz axis).The vector of the 

bending moment My acts along this neutral axis Gy. 

3) My = � 
�� ��� = 	 � �
�� ��� =


� � ��� �� = 

�

 Iy = M0 

 ρ = 
�
��

 Iy  →  
�

 = 

��

���
  : defines the curvature of deformed longitudinal axis 

 

Replacing the curvature in the relation of σx: 

σx =  
��

  = 

�	�		��

���
 

Finally we may write the formula of Navier: 

 

   σx = 
��
��  z       [ 

���
���

 ] 

 

For a rectangular cross section σ	 diagram is: 

 

 

 

 

 

 

 

 

 

Fig.7.6 



 

From Navier’s relation we may define also the curvature of the neutral 

surface: 
�

 = 

��

���
 , which is in fact a deformation specific to pure bending, 

representing the relative rotation around the neutral axis of two cross sections 

situated to a unit distance one from another. 

 

 
 

Claude-Louis Navier (1785-1836) 

 
EIy: the modulus of rigidity in bending, in [daNcm

2
] 

Navier’s formula permit the calculation of the normal stress σx in any point 

of the cross section including the maximum value of σx (generally this is the most 

important value of σx in all design problems). The maximum normal stress σxmax 

correspond to the maximum coordinate zmax. As for the rectangular cross section in 

the upper and lower fiber the coordinate z are equal but of contrary signs, in these 

fibers σx will be maximum, one of tension (+) and the other compression (-): 

 

σxmax = 
��

��
 zmax = 

��

��

����

  

 

We may define the strength modulus (section modulus): 

 



Wy = 
��
����

  [cm
3
]    and    σxmax =  

��

��
  : another form of Navier’s formula 

 

For some cross sections: 

 

- rectangle:     

 

Wy = 
��
����

 =  
���
��  

�
� = 

���
�  

 

- circle:  

 

Wy = 
� 	
�!  

�
   = 

� �
"�   

 

- I or U profile:   Wy = 
���
�   (given in tables) 

- for a simple symmetrical C.S. : 

 

W 

Wyb = 
��
�


 > 0;      Wyt = 
��
��

 < 0 

 

 

 

7.2.4 The rational sections for bent beams 

 

If we observe once again Navier’s formula: σxmax = 
��
�� , we may admit that 

σx is inversely  proportional to the section modulus Wy and implicit with the cross 

section height (in Wy the height h for the rectangle is at the second power) This 

means that the bent beams are recommended  to have big heights (if the lateral 

stability is assured ). Also the distribution of σx on the cross section height shows 

that the material is efficiently used if the cross section area is concentrated mostly 

in the extreme fibers. 

We can introduce an index of efficiency:  

n = 
��

#   = k·h 

where: k: is a coefficient that depends on the 

cross section shape 

 



The greatest coefficient n corresponds to the most economical area, because 

the consumption of material is proportional to the cross section area.  The optimum 

cross section of a bent bar is a hypothetic section made only from 2 flanges 

(rectangles). As the thickness of both flanges is very small, the distribution of σx is 

practically uniform. 

 

Iy ≅ 2  
#
� (

$
�)�= 

#��
!  → Wy≅ Iy  

�
�  = 

#�
�  

and:   n= 
��

#  = 
�
� = k h  → k = 0,5 

 

In practice this solution is impossible (without a web to connect the two flanges), 

and the flanges must be connected by a web. 

Ex:     - for IPN 400: 

    

 Iy = 29210 cm
4
; A = 118 cm

4
; Wy = 1460 cm

3
 

 n = 
�!��
��%  = k · 40 → k = 0,31 

  

 

 

 

 

- for a rectangle : 

Wy = 
���
�  ; A = bh    

n= 
�
� = k · h → k = 0.17     

 

 

           - for a circle :                   

 

 

Wy = 
� �
"�  ;  A = 

� �
!  

n = 
 
% =  k · D → k = 0,125  

 

 

The most advantageous cross section for a bent beam is the I profile (it has 

the biggest coefficient k), because the area is distributed far off the neutral axis Gy. 



 The circular section is very disadvantageous for a bent element because the 

material is concentrated around the neutral axis, where σx is very small (a lot of 

material in the weakest subjected zone) 

 The efficiency of a bent section can be appreciated also by the lever arm of 

the stresses h0 (Fig.7.7) defined as the distance between the resultants of the tensile 

stresses T and compressive stresses C. 

 
Fig.7.7 

 

The two resultants are: 

 T = � σ		dA	�� = 
&�
'�

� z	dA	�� = 
&�
'�

��( 
               C = � σ		dA	� = 

&�
'�

��) 
As Gy is a central axis, Sy = 0 and Syt = - Syc  → T = - C 

These resultants form a couple which is exactly the bending moment from section: 

My = T · h0 = C · h0 

The level arm h0, is: 

h0 = 
&�
*  = 

&�
+  = 

'�
,��

 = 
'�
,�

 

Syt and Syc: are the first moment of area (static moment) of the tensioned, 

respectively compressed area  

- for the ideal section at bending : 

 Syt = Syc = 
#
�  
�
� = 

#�
!  ;     Iy = 

#��
!  

           => h0 = 
'�
,�

 = h 



- for the double T cross section IPN 400: 

           Syt = Syc = 15,5 × 2,16 × 18,92 + 17,84 × 1,44 × 8,92 = 862,6 cm
3 

 h0 = 
�-���
%��,�  = 33,86 ≅ 0,85 h 

- for the rectangular C.S.: 

 Syt = Syc = b × 
�
� × 

�
! = 

���
%  

           h0 = 
���
��  × 

%
��� = 

�
" h ≅ 0,67 h 

 

We may conclude that if h0 is closer to h, the cross section is rational for bending. 

 

7.2.5 The main problems of design 

 

In what concern the strength calculation (σx), the main aspects in designing the 

bent beams, are:  

a) Verification 

           σxmax = 
&�	����

.�
 ≤  R    

with: My
d
 = n My

k
  : is the design bending moment 

  My
k
 : is the characteristic bending moment 

 n: coefficient of loading (partial safety coefficient for load) 

b) Dimensioning 

      Wy nec   ≥  
&�	����

/    

c) The bearing capacity at bending (the capable maximum bending 

moment) 

    M
d
y max ≤ Wy × R    

 

7.3 STRAIGHT BENDING WITH SHEARING  

 

Transverse loading applied to a beam produces normal stresses σx , but also  

shearing stresses τx in transverse cross sections. The normal stresses σx are 

produced by the bending moments My, while the shearing stresses τx are produced 

by the shear force Vz , when the force line is parallel to Gz axis  (Fig.7.8) and 

passes through the shear center C. Otherwise, when the force line is parallel to Gy 

axis and passes through the shear center C, the normal stresses σx are produced by 

the bending moments Mz, while the shearing stresses τx are produced (Fig.7.8) by 

the shear force Vy. These stresses are represented in the figures bellow, with their 

positive convention. Now, this is a compound action, but it will be studied 

separately from each stress. 



 
Fig.7.8 

 

The effect of the bending moment My was presented in the previous chapter, 

pure bending, obtaining finally Navier’s formula for the normal stress σx. The 

shear force Vz will produce a tangential (shear) stress τx, presented below. 

 

7.3.1 Straight shearing (sliding) 

 

7.3.1.1 Geometrical aspect 

 

To explain the effect of shear force we consider a model (Fig.7.9) of a bar 

loaded in such manner so that a part of the bar is subjected to pure bending and the 

rest at bending with shearing (example b.) from the first paragraph). 

 

Fig.7.9 



 

Considering that the network from the lateral surface of the model is valid inside 

the model, we observe: 

1. a supplementary increasing of the curvature of the longitudinal lines, but 

with a small quantity (approximately 5% from the curvature produced by the 

bending moment My ) 

2. in the central zone of length “l-2a” the cross sections remain plane and 

perpendicular to the longitudinal curved fibers. 

3. in the marginal zones of length “a” subjected to bending with shearing, the 

cross sections are distorted, becoming 

cylindrical surfaces with the generators: 

straight lines  and the directories: curves 

with a S shape, which remain 

perpendicular only to the extreme fibers. 

 

 

4. analyzing a rectangle from 

network from this zone of length “a”, we 

remark that the distortion is introduced by 

angular deformations (specific sidings) γxz 

in plan parallel to xGz plan, the initial 

straight angles being modified with:   

    

γxz = γt + γl 

 

γt : is produced by the relative transversal sliding of the cross section 

 γl : is produced by the relative longitudinal sliding of the longitudinal fibers 

parallel to the neutral surface (strip) 

We may observe from model that the specific sliding γxz isn’t constant on the cross 

section height, being maximum in the neutral strip and zero in the extreme fibers, 

where the straight angle was maintained.    

But, on the height of the cross section 

the specific sliding γxz has an 

unknown distribution, as well as on 

the cross section width. But, as to any 

level z, the tangent to the directories 

has the same inclination the specific 

sliding is constant on the cross section 

width. 

 



 

7.3.1.2 Physical aspect 

 

A material with a linear-elastic behaviour is considered, where Hooke’s law 

is valid: τxz  = G × γxz   

So, the shear stresses τxz have the same distribution as γxz, being constant on 

the cross section width at any level z, but with an unknown variation on the cross 

section height. Representing the constant distribution of τxz in the cross section 

plan, we may admit in accordance to the duality law that shear stresses τzx (τxz = 

τzx) will also exist, in longitudinal plans which are parallel to the neutral strip 

(Fig.7.10). Longitudinal shearing stresses must exist in any member subjected to 

transverse loading. 

 
Fig.7.10 

 

These two complementary stresses τxz and τzx correspond to 2 types of 

sliding: transversal sliding and longitudinal sliding. Shorter we’ll say that τxz 

produces shearing and τzx produces sliding. 

 

7.3.1.3 Static aspect 

 

The shear force Vz from static calculation is: Vz
st
 = P 

From strength calculation, Vz is:  Vz
res

 =� ������ , unknown because the 

distribution of τxz  is unknown on the cross section height.  

That’s why we have to search another cross section on which the shear stress 

distribution is known. 

 

 



7.3.1.4 Formula of Juravski 

 

We’ll consider a bar loaded by a system of forces acting perpendicularly to 

the axis and comprised in the longitudinal symmetry plan of the bar (Fig.7.11). 

 

 
 

Fig.7.11 

 

We may consider a constant distribution of τxz on a differential element of 

length dx, situated to a level z from the neutral strip (Fig.7.12). 

 

 
Fig.7.12 

 



According to the method of sections, the effect of the removed part is 

introduced by the stresses acting on the differential element. So, on the transversal 

sections we dispose the normal stresses σx and the shear stresses τxz, while on the 

longitudinal section at level z we dispose the sliding stresses τzx . 

To write equations of static equilibrium for this differential element, first we 

have to write the resultants of the stresses acting on the differential element. 

At a level η the normal stress σx is: 

          σx =	&�'� · η   

and the resultant: 

 T = � 
��� =	��
&�
'�

	� η · �� = 	&�'� ��(�)��  

where: Sy(z): is the static moment, written about the neutral axis Gy, of the section 

Az situated to a level z, called calculus level. 

 The differential resultant dT is (if the cross section of the bar is constant): 

 dT = d(
&�
'�

��(�)) = 	 ,�(�)'�
���= 

,�(�)
'�

���� 

where: dMy = Vz dx, from the second differential relation between stresses. 

 The resultant of the sliding stress τzx is:  

dLz = τzx ·bz ·dx 

We write an equation of static equilibrium along the bar axis:  

�x = 0:   -T + T +dT – dLz = 0 => dT = dLz  

Replacing: 
,�(�)
'�

�� dx = τzx bz dx, but τzx = τxz 

 τxz  = 	0�1�(2)3�4�
	  Juravski’s formula 

 
Dmitrii Ivanovich Juravskii (1821-1891) 



 

The formula shows that the shear stresses τxz are proportional to the shear 

force Vz and they have the same orientation as Vz, in cross section. The distribution 

of τxz on the cross section height is given by the variation of the ratio 
5�(�)
��

  . As in 

the extreme fibers Sy(z) = 0, the shear stress τxz is also null. 

 

7.3.1.5 Juravski’s formula for the narrow rectangular section 

 

A rectangular section is narrow, from shear point of view, if: 
�
� ≥ 2 

 At a level z, the static moment ( Fig.7.13) is: 

Sy(z) = b(
�
� - z)(z + 

�
! − 	 ��) = b(

�
� - z)(

�
� + 

�
!) = 

�
� (
�
� − 	z)(

�
� + 	z) = 

�
�(
��
!  - z

2
) 

 

 
 

Fig.7.13 

 

The shear stress: 

τxz = 
6�,�(�)
7�'�

 = 
6�	��(

��

	
8	��)

�	��
�


�

 = 
�6�
���	(

��
!  - z�) 

The above expression shows that τxz  has a parabolic variation on the cross 

section height.   

For z = ±
�
�  => τxz = 0 

        For z = 0 => τxz max= 
�6�
���

$�
! 	= 

"
� 
6�
��  

 



 τxz max = 1,5 
0�	
9 	  For the rectangular cross section the maximum 

shear stress from shearing with bending is with 

50% bigger that the medium stress  
0�
9  from pure 

shearing. 

 

7.3.1.6 Juravski’s formula for a double T cross section, made from 

narrow rectangles 

 

From previous paragraph we may remark that for a narrow rectangle the 

shear stresses are always orientated along the longest side of the rectangle. This 

observation is also valid for the cross sections made from narrow rectangles (the 

rolled, laminated profiles), the shear stresses τx being orientated along the biggest 

side of each rectangle, whatever is the relative position between this side and the 

force line. In accordance to this observation, in a double T cross section τxz will 

exist in web (the longest side of the web is parallel to Gz axis), while in flanges a 

shear stress τxy will appear (the flange is parallel to Gy axis) 

 Let’s consider a double symmetrical I section (Fig.7.14), subjected to 

straight shearing by a positive shear force Vz > 0. 

 

 
Fig.7.14 

 

Sy(z) = b t (
�
� + 

:
�) + d( 

�
� − 	z)(

�
! - 

�
� + z) = 

�:
� 	(h+ t) + 

�	
� 	(

��
!  - z

2
) 



τxz (z) = 
;�
����	

[bt(h+t) + d(
��
!  -z�)] 

The expression of τxz is mathematically a parabola of second degree, so in web the 

shear stress τxz parallel to z will have a parabolic variation. The maximum value 

will correspond to z = 0 (in the neutral axis): 

τxz (z) = 
<�
����	

[bt(h+t) + 
=	$�
! ] 

and, for z = ± 
�	
�  : 

τxz (z) = 
<�
����	

 bt(h+t) , a smaller value 

So, the shear stress τxz is drawn on the cross section web (parallel to z axis), 

it has a parabolic variation on the web height and with a maximum value in the 

neutral axis. As the thickness t of the rectangle is very small we admit that the 

shear stresses τx are uniformly distributed on thickness (it is constant), and their 

resultant τx×t is called shearing flow. To explain the shearing flow in a thin-

walled section, we start from τ from web (τxz) which has the same direction as Vz 

and then a hydrodynamic analogy is made considering that the section is a thin-

walled tube and a liquid must flow through it. 

In flange, at the level ξ: 

Sy (ξ) = ξ t (
�
� + 

:
�) 

τxy (ξ) = 
;�
���

 ξ(h+t)  => τxy has a linear variation  

For ξ = 0 => τxy = 0 

For ξ = 
�8�
�  => τxy = 

;�>�8�?(�@:)
!��

 

 

7.3.1.7. Juravski’s formula for a tubular cross section, made from 

narrow rectangles 

 

We consider a double symmetrical tubular (caisson) cross section (Fig.7.15). 

The static moments: 

Sy(z)= bt(
�
� −

:
�) + 2(

�
� - t -z) d (

�
! - 

:
� - 

�
� + z) = 

�:
�  (h - t) + [(

�
� − t)2

-z
2
]d  

bz = 2d 

Sy(ξ) = 
:	A	
�  (h - t) 

bz(ξ) = t 

The shear stress at the level z: 

τxz (z) = 
;�
����	

��:� 	(h	 − 	t) 	+ 	 [�$� −  !� − ��]d" 
The shear stress at the level ξ: 



τxy (ξ) = 
;�
���

 ξ(h-t)   

 

In the symmetry axis Gz, when the shear force Vz acts along it, τxy = 0 

 
 

Fig.7.15 

 

7.3.2 Longitudinal sliding 

 

7.3.2.1 The longitudinal force of sliding 

 

In the previous paragraph, we have seen that in accordance to duality law, 

tangential (sliding) stress τzx will also exist in plans that are parallel to the neutral 

surface, called shorter sliding stresses τzx. On a length of beam, their resultant is 

called force of sliding.  

We can explain very simple the existence 

of these sliding forces, considering a 

composed beam made from 2 superposed 

elements (a). 

In the first situation we admit that the 2 

elements aren’t connected (b). Each 

element is deformed separately, generating 

separately the typical linear variation of 

normal stress σx over its own depth. The 

contact surfaces will slide one with respect 

to the other. 



Now, considering the elements are connected between them, both elements 

respond as a unit (c). Bending stresses will now vary linearly over the whole depth. 

The relative sliding of the contact surfaces is prevented, along these surfaces 

appearing sliding forces. 

 To evaluate the sliding force, we start from the differential sliding force dLz 

used in the demonstration of Juravski’s formula: 

dLz = τzx bz dx, at a calculus level z 

but: τzx = 
6�,�(�)
7�'�

 

and: dLz = 
6�,�(�)
'�

 dx 

On a finite interval, between x2 and x1, from integration, the sliding force is: 

 

      Lz = � dL�
	�
	
  = � 6�,�(�)

'�
	dx

	�
	
   

If the cross section is constant on the 

length e = x2- x1, the ratio 
,�(�)
'�

	 = const. 

Lz = 
,�(�)
'�

	 � V�
	�
	
 	dx 

 

With: dMy = Vz · dx  => 

  

Lz = 
,�(�)
'�

	 � dM�
	�
	
  = 

5�(�)
��  (My2 – My1)  

 

If the distance:  e = x2 – x1 is small we may consider a constant distribution 

of the shear force Vz on this distance, and: 

Lz = 
,�(�)
'�

	 V� � dx
	�
	
  =  

,�(�)
'�

	 V� (x2 –x1) =>  

 Lz  =  
1�(2)	B�
4�

	e   
In this formula:  

Sy(z) is the static moment of the area that slides longitudinally, admitting 

that we neglect the connection elements (rivets, bolts, welding). 

e: the longitudinal distance between these elements (rivets) 

 

7.3.2.2 The elements of connection 

 

 We discuss the case of a composed I section, connected with rivets through 

4 angles with equal legs. The angles are connected to web by grove rivets (1)



and to flanges by head rivets (2). From constructive reasons, the diameters of both 

types of rivets are taken identically, but the head rivets are placed in sections 

situated to a semi distance (e/2) from the sections with groove rivets (to avoid a 

greater diminishing of the cross section due to the rivets holes) 

 In the formula of Lz, the static moment Sy(z) is taken : 

- for head rivets (2) : 

  

     

  Sy(z2) = A2 z2 

 

 

- for grove rivets (1): 

 

     

 Sy(z1) = A1 z1 > Sy(z2) 

 

 

 

 

 

As Sy for the grove rivets (1) is bigger: Sy(z1) > Sy(z2) the sliding force is 

also bigger  Lz1 >Lz2, so it is sufficient  if we compute only these rivets (1): 

Lz 1 =  
,�(��)	;�

'�
	e  

This sliding force, which corresponds to one rivet, must not exceed the 

minimum stress (force) which can be transmitted by one rivet, representing the 

minimum between the stress corresponding to the rivet shearing, respectively the 

stress corresponding to the local pressure: 



 Nmin = min (Nf, Np)    

Nf = nf 
���
!  0.8R 

          Np = d (�t)min 2R 

So, the condition is: 

Lz1 ≤ Nmin  =>         e ≤  
C���'�
6�,�(�
)

 

where: Iy and Sy(z1) are taken with their gross values (without diminishing) 

Supplementary, there are constructive measures given in standards, which impose: 

e ≤ 8d 

e ≤ 12t 
where : d: the rivet (bolt) diameter  

    t: the minimum thickness of the elements connected with rivets (bolts) 

 

7.4. THE CALCULATION OF DEFLECTIONS DUE TO UNIAXIAL 

BENDING 

 

7.4.1. Basis of design 

 

Let’s consider a simple supported beam subjected to uniaxial (straight) 

bending (fig.7.16).  

 
Fig.7.16 

 

The beam is represented in a deformed shape, the main deformations being 

inscribed on figure. 

Admitting the hypothesis of the small deformations, the calculation of these 

deformations is made on the undeformed shape of the bar (calculus of first order) 

and we shall admit that we have only vertical displacements w, called deflections 

(the longitudinal displacement u of the mobile support is neglected and horizontal 

component of the displacement uk is also neglected in comparison with the 



deflection wk). Also, in time of deformation, the cross sections are rotating around 

the neutral axis Gy, producing the rotation φy, which is equal to the angle between 

the horizontal and the tangent to the deformed shape of the beam. 

 The displacement (deflections and rotations) of the cross section can be 

calculated by two main methods: 

- methods that use the differential equation of the deformed axis (fiber) 

- energetically methods (studied later) 

 

7.4.2 The analytical calculation of the displacements integrating the 

differential equation of the deformed axis (Direct integration of the equation 

of the elastic curve) 

 

          From analytical geometry, the expression of the curvature of a plane curve 

(a) is: 

           
�

 = 

���

���

[�@D��
��
E
�
]�/�

   

  

For a curved bar (b) the curvature can be written: 

           
�

 = 

���

���

[�@	D��
��
E
�
]�/�

 

In practice the deformed fiber (axis) has a very small curvature and the first 

derivative of the deflection w can be 

assimilated to the rotation φ: 
�#
�� = # , =  $% ≅ % 



 

With this, the curvature in the above relation:   
�

 = 

���

���

(�@	F�)�/�     

But, the rotation φ, expressed in radian, has always a very small value, so 

the square of φ in this relation can be neglected. With this simplification, the 

curvature is: 

         
�

 = 

��G
�	�  = w

’’
      

  But, from pure bending we know that the relationship between bending 

moment and curvature remains valid for general transverse loadings: 

 
�

 = 

&�
'�

 

Between the curvature 
�
� and the bending moment My, a sign convention is 

considered: the curvature is positive if the curvature center Cρ is situated towards 

positive z axis: 

 

In conclusion: the curvature 
H
I	and the bending moment will always have 

different signs. 

From this observation we may write now correct the relationship between bending 

moment and curvature, obtained in paragraph 7.2.3: 

             
�

 = -	����� 

Identifying these two expressions of the curvature we write finally the differential 

equation of the deformed axis (equation of the elastic curve):  

													��G�	�  = w
’’ 

= - 
��
���      where: EIy is the modulus of rigidity for bending 

Integrating once, the rotation φ is obtained: 



            
�G
�	  = φ = - � &�

'�
��	+ C1 

Integrating once again, the deflection w is obtained: 

            w = - ��� � &�
'�

��	+ C1x + C2 

The constants of integration C1 and C2 can be calculated from boundary 

conditions written in supports, or from continuity conditions. 

Boundary conditions: 

 - for simple (mobile) support or for hinge: w(0) = 0, φ(0) ≠ 0 

 
- for a built-in (fixed) support: w(0) = 0, φ(0) = 0 

 
The continuity conditions take account the fact that the deformed shape of 

the bar must remain a continuous function and with continuous derivatives. 

 

 

- the continuity conditions: 

      

 wDst = wDdr  and φDst  = φDdr 

 

 

 

 

 

To integrate the differential equation    
��G
�	�  = - 

��
��� , the function My(x) must 

be continuous and with continuous derivatives.  

 



Examples: 

For the cantilever loaded by the concentrate force P acting in the free end: 

 

 

����� = −&(' − �) which is 

introduced in the equation of the elastic 

curve: 

													��G�	�  = - 
��
��� 

 

            
�G
�	  = φ = � J(K8�)

'�
�� =

JK
'�

� −
J
'�

��
� + (� 

  

w = - ��� � &�
'�

��	 =
JK
'�

��
� −

J
'�

��
� + (�� + (� 

Writing the boundary conditions in the built-in support: 

#�0� = 0	and %�0� = 0  → (� = (� = 0 

The analytical expressions of the deflection w(x) and rotation φ(x) are: 

w(x) = 
JK
'�

��
� −

J
'�

��
�   and  φ(x) = 

JK
'�

� −
J
'�

��
�  

Their maximum values are in the free end of the cantilever, so for x=l: 

#LM� =
JK�
"'�

  and %LM� =
JK�
�'�

 



For the cantilever loaded by the uniformly distributed force q on the entire 
length: 

 

 

����� = −) (K8�)�
�  which is 

introduced in the equation of the elastic 

curve: 

													��G�	�  = - 
��
��� 

 

            
�G
�	  = φ = � ) (K8�)�

� �� =
NK�
�'�

� −
NK
'�

��
� +

N
�'�

��
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w = - ��� � &�
'�

��	 =
NK�
�'�
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� +

N
�'�
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�� + (�� + (� 

Writing the boundary conditions in the built-in support: 

#�0� = 0	and %�0� = 0  → (� = (� = 0 

The analytical expressions of the deflection w(x) and rotation φ(x) are: 

w(x) = 
NK�
�'�

��
� −

NK
'�

��
� +

N
�'�

�	
��  and  φ(x) = 

NK�
�'�

� −
NK
'�

��
� +

N
�'�

��
"  

Their maximum values are in the free end of the cantilever, so for x=l: 

#LM� =
NK	
%'�

  and %LM� =
NK�
�'�

 

For the simple supported beam loaded by the uniformly distributed force q 
on the entire length: 

 

 

����� =
NK
� � − ) ���  which is 

introduced in the equation of the elastic 

curve: 

													��G�	�  = - 
��
��� 

 

            
�G
�	  = φ = �(−

NK
� � + ) ��� )�� = −

NK
�'�

��
� +

N
'�

��
� + (� 

  



w = - ��� � &�
'�

��	 = −
NK
�'�

��
� +

N
'�

�	
�! + (�� + (� 

Writing the boundary conditions in the simple support and in hinge: 

#�0� = 0	and #�'� = 0  → (� = 0 and (� =
NK�
�!'�

 

The analytical expressions of the deflection w(x) and rotation φ(x) are: 

w(x) = −
NK
�'�

��
� +

N
'�

�	
�! +

NK�
�!'�

�  and  φ(x) = −
NK
�'�

��
� +

N
'�

��
� �

+
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�!'�

 

The maximum value of the deflection is in the middle span of the beam, so 

for x=
K
�: 

#LM� =
O
"%!

NK	
'�

  and the corresponding rotation % �K�! = 0 

The maximum value of the deflection is in the beam supports, so for x=0 or 

x=l: 

 %LM� = ±
NK�
�!'�

 

 

If My diagram isn’t continuous, the integration must be done on each interval 

of continuity. 

 

Example:         

       

 M1(x1) = 
P�
Q x1 

       

 M2(x2) = 
P�
Q x2 – P(x2 - a) 

 

 

 

 

 

7.4.3 Conjugate beam method 

The method uses the formal analogy between the differential equation of the 

deformed axis: 



              
��G
�	�  =  

�F
�	

 
= - 

�
��       

and the differential relations between stresses and loads (from statics): 

              
���
�	�  =  

�;
�	

 
= -p 

We can formally compare: 

The displacement w with the moment � 

The rotation (slope) φ with the shear force �  

The external load p  with 
�
�� 

This load p =	��� will action upon a fictitious beam, called conjugate beam. 

Following the analogy made before, we may define: 

The conjugate beam is a fictitious beam which accomplish in stresses (bending 

moment � and shear force �) the conditions accomplished by the real beam, in 

displacements (deflection w and rotation φ). 

Corresponding real and conjugate beams are shown below: 

              Real beam                                 Conjugate beam 

 



 

From the above comparisons, we can state two theorems related to the conjugate 

beam:  

Theorem 1: The rotation (slope) φ at a point in the real beam is numerically 

equal to the shear force �	at the corresponding point in the conjugate beam. 
Theorem 2: The displacement w (or v) of a point in the real beam is numerically 

equal to the bending moment �	at the corresponding point in the conjugate 
beam 

               We shall exemplify the method for the same examples illustrated in the 

previous paragraph: 

For the cantilever loaded by the concentrate force P acting in the free end: 

 

 
 

���� = � = � =
1

2

��
�� � ∙

2

3
� = ��!

3�� 

 
 

���� = � = � =
1

2

��
�� � =

��"
2�� 

 

For the cantilever loaded by the uniformly distributed force q on the entire 
length: 

 

 

���� = � = � =
1

3

	�"
2�� � ∙

3

4
� = 	�#

8�� 

 
 

���� = � = � =
1

3

	�"
2�� � =

	�!
6�� 

 



For the simple supported beam loaded by the uniformly distributed force q 
on the entire length: 
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7.5 APPLICATIONS TO UNIAXIAL BENDING WITH SHEARING 

7.5.1 For the simple supported beam with the static scheme and the cross section 

from the figure bellow calculate: 

a. geometrical characteristics 

b. diagrams of stresses 

c. the strength verification at bending (
�	LM� = 2100���/(*�) and the normal 

stress diagram σx  

d. in section A’ (A left) the shear stress diagram τx with the significant values 

 
 

 

 
 



 

The diagrams of stresses: 

 
The critical section at bending is section C’ (C left), where My max = -237.5kNm. 

With the second moment of area Iy = 62040cm
4
, the maximum normal stress: 


�	LM� =
��	LM�

�� �LM� =
(−237.5 × 10!)

62040
47.08 = 1802

���
(*� < 2100

���
(*�  


�	LRS =
�−237.5 × 10!�

62040
(−23.12) = 885

���
(*�  

 



In section A’ the shear force Vz max = -100kN 

τxz max = 
6�,�(�)
7�'�

=
���∙���(!T.�%∙�.�∙!T.�% �U )

�.�∙���!� = 178.64
=MC
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τxz 1-1 = 
���∙���(%�.!∙�O.")

�.�∙���!� = 165.2
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τxz 2-2 = 
���∙���(%.%O∙�.�∙�%.�-O)

�.�∙���!� = 26.7
=MC
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τxy 3-3 = 
���∙���(��.�∙�.�∙�%.��@��.%∙�."O∙�".O-O)

�."O∙���!� = 71.9
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τxy 4-4 = 
���∙���(��.�∙�.�∙�%.��)

�."O∙���!� = 35.1
=MC
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7.5.2 For the simple supported beam with the static scheme and the cross section 

from the figure bellow calculate: 

a. geometrical characteristics 

b. diagrams of stresses (function the load parameter q) 

c. the load parameter q if 
�	LM� = 2200���/(*� and then the normal stress 

diagram σx  

d. in section A’’ (A right) the shear stress diagram τx with the significant values 

 

 
 

 

 

 



 

The diagrams of stresses (function 

the load parameter q): 

 
 

The critical section at bending is where My max = 3.125q 

With the second moment of area Iy = 20969cm
4
, the maximum normal stress: 


�	LM� =
��	LM�

�� �LM� =
(3.125q × 10!)

20969
19.04 = 2200

���
(*�  

From the above equation, q = 77.5kN/m 


�	LRS =
�3.125 · 77.5 × 10!�

20969
�−13.36� = −1543

���
(*�  

 

In section A’’ the shear force Vz max = 193.75kN 

τxz max = 
6�,�(�)
7�'�

=
�-".TO∙���(�T.%!∙�∙�T.%! �U @�.�·��·�%.!!)

�∙��-�- = 351.5
=MC
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τxz 1-1 = 
�-".TO∙���(�.�·!�·��.T�)

�·�∙��-�- = 283
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τxz 2-2 = 
�-".TO∙���(�.�·��·�%.!!)

�∙��-�- = 204.5
=MC
)L�

 

τxy 3-3 = 
�-".TO∙���(�.�·�-·��.T�)

�.�∙��-�- = 224
=MC
)L�

 

τxy 4-4 = 
�-".TO∙���(�.�·-·�%.!!)

�.�∙��-�- = 153.3
=MC
)L�

 



 

 

 


