
 

 

Chapter 5 

CENTRIC TENSION OR COMPRESSION  

( AXIAL LOADING ) 

 

5.1 DEFINITION 

 A construction member is subjected to centric (axial) tension or 

compression if in any cross section the single distinct stress is the axial force N. 

 If the axial force N is positive we discuss about centric tension (Fig.5.1), 

respectively if it is negative we have centric compression: 

 

Fig.5.1 

Example of a bar subjected only to axial loading: 

 

 

 

 

 

 



5.2 GEOMETRICAL ASPECT 

We study this aspect on a rubber model, with a rectangular cross section 

(Fig.5.2). On the lateral surface, parallel and equidistant lines are traced. 

The model is subjected to centric tension by two equal forces F at each end, 

the bar reaching a deformed elongated shape. 

 

Fig.5.2 

After deformation we observe: 

- the initial straight lines remain straight and parallel, respectively perpendicular, to 

the longitudinal axis of the model. 

- the longitudinal lines become longer, all being increased with the same quantity. 

- the transversal lines remain parallel and become shorter with the same quantitie. 

From these observations we may say that the initial cross sections, plane and 

parallel on longitudinal axis Gx before deformation remain perpendicular and 

plane after deformation (Bernoulli’s hypothesis is valid). So the lengthening is 

produced by the relative displacement of the cross sections. The lengthening along 

the longitudinal fibers is uniformly distributed on cross section and the specific 

elongations εx are also uniformly distributed on cross section: 

     εx = const. = 	∆�
�
 

The same observation can be made for the other two specific strains: 



 εy = 
∆�

�
 = -μ εx ;     εz = 

∆�

�
 = -μ εx 

μ : Poisson’s ratio: μ = 0…..0,3 (ex.: for steel μ= 0,3) 

As in practice εx is very small, we may neglect εy and εz, the single important 

specific strain remaining ε
x
. 

If we observe a rectangle from model, we can see that after deformation the initial 

straight angles remain also straight, so the specific sliding is null on all directions: 

 γxy = γxz = γyz = 0 

In conclusion, the single strain different from zero is the specific elongation εx 

which is constant on cross section. 

5.3 PHYSICAL ASPECT 

Considering the case of a linear-elastic material, we may write Hooke’s law: 

σ = E·ε    and    τ = G · γ 

For our solicitation these relations become: 

 σx = E·ε x = const. 

 σy = σz = 0 ;  τ xy = τ xz = τ yz = 0 

!!!!! The normal stress σx, for the axial solicitation (loading), is always constant 
on cross section (Fig.5.3).    

 

Fig.5.3 



5.4 THE STATIC ASPECT 

For our model, the single stress in cross section is the axial force: 

N = F (written from exterior) 

Writing from interior, the axial force is (3.6): 

N = � σ����
 = σx � ���

  = σx · A 

   σx = 
�	

�
      (5.1)  

Relation (5.1) represents the formula of the normal stress σx due only to the axial 

force N, so from axial loading.  

From Hook’s law, the specific strain: 

 εx = 
��

	
 , or replacing σx   =>  εx = 

�

	·�
 

From the geometrical aspect explained in chapter 2, the elongation of a differential 

element dx is: 

εx = 
∆
�


�
    (par. 2.1.2) 

=> ∆dx = εx· dx = 
�

	·�
 dx 

The total elongation of a bar of length l, is: 

 ∆l = � �

	·�

�

�
 dx 

If N, E and A are constant on the entire length l, the total elongation will be: 

     ∆l = 
��

	·�
         (5.2) 

Otherwise:      ∆l = ∑ �·��

��·��
 

The factor (EA) is called modulus of rigidity at centric tension or compression 

The main problems regarding the strength calculation are: 

a) The strength verification (checking): 

σx max = 
����
�

	����
  ≤ R   in Ultimate Limit State  (5.3) 



where: N
 = n·N�  : is the design axial force 

  N�  : is the characteristic axial force 

n: is the partial safety factor for  actions 

Usually:  R - 5% ≤ σx max ≤ R+ 3% 

Observing the above relations, the maximum normal stress σx max will appear in the 

critical (dangerous) sections, which are: 

 - sections of maximum axial force : Nmax 

 - sections of minimum (net) area (Fig.5.4): Amin = Anet = Agross - ∆A 

 
Fig.5.4 

A����	�
= bh – bd 

A���
	

= bh – 2ab 

 - sections of contact between 2 materials of different resistances (Fig.5.5): 

 

  Sections a-a and b-b are dangerous 

sections in the strength computing 

 

 

 

 

Fig.5.5 



 

b) The bar dimensioning    
 

Anec ≥ 
����
�

�
           (5.4)  

 

c) The capable (maximum) axial force (the bearing capacity): 

 

N���

 ≤ A���R      (5.5) 

 

5.5 CENTRIC TENSION OR COMPRESSION, WHEN WE TAKE 

INTO ACCOUNT THE EFFECT OF THE MASS FORCES (THE SELF-

WEIGHT) 

Let’s assume a cantilever is axially compressed on vertical direction, and the 

length l is big enough so that its own weight can’t be neglected (Fig.5.6). 

 

 

 

 

 

 

 

 

 

 

Fig.5.6 

Besides the external force F the bar is subjected by the self-weight g, which 

is a uniformly distributed load along the longitudinal axis of the bar x. The normal 

stress σx in a section at level x is: 

σx = 
�(�)

�
 = 

�����

�
 = 

�

�
 + γ · x 



The maximum value of σx  is, for x = l: 

σx max = 
�

�
 + γ ·l = 

���

�
 

G: the total weight of the bar 

The total elongation ∆l:  

∆l = � �(�)

	�

�

�
 dx = � ����	�

	�

�

�
 dx = 

��

	�
 + 

��

	�
 
�


�
 |�
� = 

��

	�
 + 

�

�
  
��

	�
 

Relation of ∆l may be written shorter, for bars with different N, E and A:  

∆l = ∑∆l� = ∑(
��		��

	�	��
	+ 	�

�

��	��

			���
) 

We note: Ni li + 
�

�
  Gi li = ΩNi : the area of the characteristic axial force diagram. ∆l 

will be then:       

 ∆l = ∑ Ω��

	�	��
                                        (5.6) 

The relation will be written separately for each part of the bar for which N, E 

and A are constant, the total elongation ∆l being finally their sum ∑∆�� . 
5.6 STRESSES ON AN OBLIQUE PLANE  

Let’s consider a tensioned bar and a cross section 1-1 which is perpendicular 

to the longitudinal bar axis (Fig.5.7). Removing one part, in the cross section 1-1 

of the other part the effect of the removed part is introduced by distributed internal 

forces measured by unit stresses σx. 

 



Fig.5.7 

In section 1-1 the resultant of the internal forces is the axial force: 

 � = �� · � 

Now we consider another section 2–2, which will be inclined with an angle α with 

respect to section 1-1 (Fig.5.8). 

 

Fig.5.8 

Similarly, removing one part of the bar, the other part will be in equilibrium if in 

the inclined section 2 -2 it is introduced the effect of the removed part also by 

internal distributed forces. 

These two sections 1-1 (transversal) and 2-2 (oblique) are fictitious sections and 

they can’t modify the state of stresses from bar, meaning the axial force and the 

direction of the internal forces (σx respectively pn). Therefore through the cross 

section 1-1 the same axial force will be transmitted as through the inclined section 

2-2, and the unit stresses σx and pn will be uniformly distributed on both sections. 

We may write then: 

N = σx ·A = pn ·An 

But:  cosα = 
�

��
    => An = 

�

 !"#
 

Replacing:    σx · A = pn · 
�

 !"#
 => pn = σx · cosα 

Decomposing pn (Fig.5.9), we obtain the normal, respective tangential component 

of the unit stress pn in the inclined section: 

σn = pn · cosα = σx · cos2α = 
��

�
 (1 + cos2α) 

τns = - pn ·sinα = - σx · sinα · cosα = -  
��

�
 · sin2α 



 

 

Fig.5.9 

The sign (-) from the shear stress τns appear from a reason of positive conventional 

orientation of the tangential stress τ in the system of axis n–s from section 2-2. 

For different values of the angle α , different stresses σn and τns are obtained. We 

are interested in the extreme values of σn and τns which are obtained for the 

trigonometrically values cos2α = ±1 and sin2α = ±1: 

cos2α = 1  => α = 0 => An = A => 	σ� = 	σ� = 	σ���

τ�" = 0  

cos2α = -1 => α = 
$

�
 = 90

0    
=> An = Az => 
σ� = 	σ% = 	0

τ�" = 0
 

sin 2α = 1 => α = 
$

&
 = 450 => An = A��

 =>� σ� = 	��
�

τ�" = −
��

�
= τ���

 

sin 2α = -1 => α = 
'$

&
 = 1350(-450) => An = A����

 =>� σ� = 	��
�

τ�" =
��

�
= τ���

 

In conclusion, the maximum normal stresses σx max appear in the cross section, 

while the extreme shear stresses τmax,min appear in the sections inclined with 45
0
. 

To have a view of the state of stresses around an interior point K from bar, these 

results can be represented in a plan, called the plan of the unit stresses (Fig.5.10).  



 

 

 

 

 

 

 

 

Fig.5.10 

5.7 UNDETERMINED STATIC STRUCTURES (HYPERSTATIC 

SYSTEMS) SUBJECTED TO AXIAL SOLICITATION 

 Structures for which internal forces and reactions cannot be determined from 

statics alone are said to be statically indeterminate. 

A structure will be statically indeterminate whenever it is held by more 

supports than are required to maintain its equilibrium. 

In these structures, we have more unknowns than equations, that’s why we 

introduce other relationships written in deformations in order to find the state of 

stresses from structure. 

 

5.7.1 Double fixed bar actioned by a concentrate force 

Let’s draw the diagram of the axial force for a double fixed bar (Fig.5.11), 

having a constant rigidity EA. 

 In the fixed support the vertical reactions are introduced, RVA and RVB, 

reactions which assure the static equilibrium: 

�(� + �() =  

To obtain the reaction RVA and RVB we have to write a supplementary 

condition in deformations, writing the total elongation of the bar ∆l = 0: 



�� = ���*+ + ��+*) =
,��·-

��
+

.,��*/01

��
= 0 =>    �(�  = P 

�

�
  and  �()  = P

�

�
     

 

Fig.5.11 

5.7.2 Undetermined system of parallel bars. 

We consider a very rigid bar (bar of infinite rigidity), suspended horizontally 

by 3 tyrants (tie rods) made from different materials and with different areas (E1A1, 

E2A2, E3A3), so with different rigidities (Fig.5.12). The rigid bar ABCDE is hinged 

in A, and solicitated by a concentrate force P in E. 

 

Fig.5.12 



Let’s compute the axial stresses Ni from rods. First, an equation of moment 

about the hinged support is written: 

(a) (�M)A = 0 : N1· a + N2 · b + N3 · c = P · d    

Equations in deformations are written considering that the rigid bar remains 

rectilinear after the system deformation: 

(b)  
∆��

∆��
 = 

 

�
   

∆�


∆��
 = 

�

�
    

∆��

∆�

 = 

 

�
 

But:    ∆l1 = 
���

	���
             ∆l2 = 

�
�

	
�

   ∆l3 = 

���

	���
 

 (b
’
)     

���

	���
= 

�� 

	���
     

�
�

	
�

= 

���

	���
   

=>    N3 = N1 
 

�
  
	���

	���
   and  N2 = N1	�

�
  
	
�


	���
 

 (a
’
) N1 a + N1 

�


�
 
	
�


	���
 + N1 

 


�
 
	���

	���
 = Pd 

                 N1 (a
2
 E1A1 + b� E2A2 + c� E3A3) = PdaE1A1 

If: a
2
 E1A1 + b

2
 E2A2 + c

2
 E3A3 = λ 

   =>     N1 = P d  
�

2
E�A� ;     N2 = P d  

�

2
E�A�	;    N3 = P d  

 

2
E'A'  

From equations of vertical and horizontal equilibrium we may calculate also 

the reactions from A. 

5.7.3. Undetermined system of concurrent bars. 

Three concurrent tie rods are subjected to tension by the concentrate force P 

(Fig.5.13). The inclined rods are identically (the same length and rigidity E1A1), 

while the vertical bar has the rigidity E2A2. Let’s calculate the stresses from rods. 

 
Fig.5.13 

Isolating node 0 we have: 

 



The horizontal equilibrium is an identity from symmetry reason (from 

geometrical and rigidity point of view), also the moment equilibrium is an identity 

(all forces pass through point O). The single equation which can be written is the 

vertical equilibrium equation: 

2N1cosα + N2 = P   (a) 

After deformation the new angle α
’ ≅ α, as the lengthening ∆l1 and ∆l2 are 

very small. We may write a second equation in deformations: 

  ∆l1 = ∆l2 cosα    (b) 

or: 
����

	���
 =

�
�


	
�

 cosα 

but: l2 = l = l1 cosα  

=> 
����

	���
 =

�
�� !"#

	
�

 cosα         => N1 = N2 

	���

	
�

 cos

2α 

From (a):  2N2

	���

	
�

 cos

3α + N2 = P 

         N2 = 
3


����
�
�


 !"�#��	
      N2 = 

3

����
�
�


 !"�#��	
 
	���

	
�

 cos

2α 

 

5.7.4 The effect of the temperature variation in undetermined systems. 

 

 

 

Fig.5.14 

We’ll study the same system 

from paragraph 5.7.3, but 

unloaded by the force P. After 

assembling the rods, the 

temperature in rods grows with 

∆t. As a consequence of 

temperature variation the bars 

will present lengthening (from 

dilatation), but as this 

lengthening isn’t free, axial 

stress will be produced in rods. 

To simplify the calculus we 

admit the rods have the same 

rigidity EA (Fig.5.14). 

 



From vertical equilibrium equation: 

2N1cosα + N2 =0  (a) 

The condition in displacements will be written also: 

∆l1 = ∆l2 cosα  (b)  

But in the expression of ∆l we must add a term that takes into account the 

temperature variation: 

 ∆lt = αl∆t    α: thermal expansion coefficient (1/
o
C) 

Equation (b) will be then: 

 
����

	�
 + αl1∆t = (

�
�


	�
+ αl�∆t) cosα (b’) 

With l2 = l1 cosα  => 

��

	�
 + α ∆t = (

�


	�
+ α∆t) cos

2α 

�

	�
(N1 - N2 cos2α) = α ∆t(cos2α -1)  (b’’) 

From (a): N2 = -2N1cosα which introduced in (b’’) give the stresses: 

N1 = EA ·α ∆t 
	 !"
#*�

��� !"�#
 

N2 = -2EA · α ∆t 
 !"#	( !"
#*�)

��� !"�#
 

 

5.7.5 Bars with unhomogene sections, subjected to centric tension or 

compression  

In all previous examples of undetermined structures, we admitted that section is 

homogene and the unit stresses σ have uniform distribution on section. In practice 

there are also bars with unhomogene cross sections, as: columns from reinforced 

concrete, rods from copper or aluminum with steel core, etc. 

If we admit that the axial force N which acts in a section of such bar is known, let’s 

determine the repartition of the normal stresses σ in that section (Fig.5.15). 

Both materials from rod will overtake a fraction from the axial force N = F, the 

copper: Ncu, the steel: Nol.  



 

 

 

 

Fig.5.15 

Obviously: 

 Ncu + Nol = N (a) 

We need also a condition written in deformations. We admit that the materials are 

solidarized between them, so their deformations must be equal. We write this 

condition in specific deformations ε, from Hook’s law (σ = E ε): 

 ε = 
���

	��
 = 

���

	��
   (b) 

We multiply each fraction with the correspondent area Ai and writing that these 

fractions are equal to the sum of numerators divided to the sum of denominators, 

we obtain: 

���

	��
 = 

���

	��
 = 

������

	�����
 = 

������

	�����
  = 

�������������

	������	�����
 = 

�������

	������	�����
  = 

�

	������	�����
  

=>   σ 4 = 
	��

	������	�����
  and  Ncu = σcuAcu 

        σ!� = 
	��

	������	�����
  and  Nol = σolAol 

 

 5.8 APPLICATIONS 

 5.8.1 A steel column sits on a concrete foundation by a metal base plate 

(Fig.5.16). The following information are known: the load parameters are nF = 1.5 

and nγ = 1.35 ; the design strength of the materials are  Rsteel = 2100 daN/cm
2
, 

Rconcrete = 55 daN/cm
2
, Rsoil= 3.2 daN/cm

2 
; Young modulus of the materials are 

Esteel = 2.1×10
6
 daN/cm

2
, Econcrete = 240000 daN/cm

2 
; specific weight of concrete 

γconcrete=25kN/m
3
. Make the strength check and dimension the steel plate (l=?). 

Then compute the total shortening ∆l. 



 

Fig.5.16 

 

The characteristic weight of the 

foundation is: �56 = 75	�� 

The design weight of the foundation 

is: �57 = 75	 · 1.35 = 101.25	�� 

The axial force diagram (both 

characteristic and design) is 

presented in fig.5.16.1. 

We shall make the strength check in 

section 2-2 and from section 1-1 we 

shall dimension the steel plate. Both 

calculations are strength calculations 

made with the design axial forces N
d
 

 

 
Fig.5.16.1 

Section 1-1: 

�� =
�

�
=

8��·��


�.9�

≤Rconcrete	= 	55	daN/cm

2→ � ≥ 26.96�� → � = 27�� 



Section 2-2: 

�� =
�

�
=

:&�.�9·��


���·�9�
= 3.13	daN/cm

2<Rsoil	= 	3.2	daN/cm
2 

The total shortening ∆l is calculated with formula 5.6 and using the 

characteristic axial force N
k
 diagram: 

Δl = − �400 · 10� · 450

2.1 · 108 · 77.8
+
�560 + 635� · 10� · 100

2 · 240000 · 200 · 150
� = −0.1184�� 

 

5.8.2 The bar of infinite rigidity ABC is fixed in points B and C by 2 tie rods 

of different rigidities (Fig.5.17). Knowing: a = 1.2m , A2 = 2A1 , A1 = A0 =5cm
2
 , 

calculate: 

1. The axial forces N1 and N2 in the two rods. 

2. The load parameter q from the condition that in both rods the maximum 

normal stress σx max=2000daN/cm
2
 should not be exceeded 

3. If the tie rods areas A1 = A2 = A0 calculate the vertical displacement of 

point D (E=2.1×10
6
 daN/cm

2
) 

 

 

Fig.5.17 



1. 

 
Fig.5.18 

From the geometry of the structure 

(Fig.5.17 and 5.18): 

 

�� =
3����� 

�� =
3����� 

 

As the bar ABC has infinite rigidity it can only move (remaining straight), 

rotating around the hinge from point A (Fig.5.18). After displacement the rigid bar 

reaches the dotted position from Fig.5.18. Point B is displaced with δB, while point 

C is displaced with δC. 

In points B and C from Fig.5.18 the axial forces from rods N1 and N2 are 

introduced. The moment equilibrium equation is: 

�� !
�

= 0:" · 4� · 2� − ������ · 3� − ������ · 4� = 0	 → 

3�� sin� + 4�� sin� = 8"�  (1) 

From Fig.5.18 we may write a supplementary condition in deformations: 

;�

;�
=

'1

&1
    (2) 

But:  

#) =
∆��

<�=>
   and 	#+ =

∆�


<�=?
 . With these equation (2) becomes: 

4
∆��

<�=>
= 3

∆�


<�=?
  →  4

���

���<�=>
= 3


�


��
<�=?
   (2

’
) → �� =

'
<�=

>

@<�=
?
 

Replacing N1 in equation (1) we get: �� =
:,8A

������

����
 
�&<�=?

 

Function the load parameter q the axial forces from rods will be: 

 N2=2.739q and N1=1.426q 

 



2. From the condition that σx max=2000daN/cm
2
 in both rods: 

��� =
1.426q · 10�

5
≤ 2000 → " ≤ 70.12��/� 

��
 =
2.739q · 10�

10
≤ 2000 → " ≤ 73.02��/� 

The load parameter q is the minimum between the two above values, so: 

  q = 70.12 kN/m  

 3. If A1 = A2 = A0=5cm
2
, we must re-calculate the axial forces N1 and N2. 

From the previous equation (2
’
) : 4

���

���<�=>
= 3


�


��
<�=?
 → �� =

'
<�=

>

&<�=
?
 

Inserting N1 in equation (1) and with the load parameter q= 70.12 kN/m, the axial 

forces from rods will be: 

 N2=62.47 kN and N1=65.07 kN 

From Fig.5.18 we may write:  

;�

;!
=

'1

�.91
 			→ 				#B =

;�

�
=

�
�"

����

���#<�=>
= 0.223�� 

 

 

 


