
Chapter 3 

THE STATIC ASPECT OF SOLICITATION 

 

3.1. ACTIONS 

Construction elements interact between them and with the environment. The 

consequence of this interaction defines the system of actions that subject the 

construction elements. This system is represented by forces, which shall be named 

actions, loads. 

There are 3 main types of actions: 

- Permanent or dead loads (G) are loads relatively constant in time, 

transferred to structure throughout the life span. E.g.: self-weight of the 

structural members, fixed permanent equipment or weight of different 

materials. 

- Variable or live loads (Q) are temporary, of short duration. E.g.: imposed 

load, snow, wind, or temperature variation. 

- Accidental (A) are loads lasting a few seconds. E.g.: earthquakes, 

explosions or impact of a vehicle.  

All these actions must be combined in some manner. It would be 

unreasonable to assume that the maximum values of all loads occurred 

simultaneously.  

The loads acting on constructions elements are: 

a) concentrated (point) loads are single forces acting over a relatively 

small area: ,  , , measured in [force] units: [kN], [daN], [t], 

[kg]….. 

b) distributed loads: p, q 
- linear distributed loads, are loads that act along a line → on bars 

- surface distributed loads, acting over a surface area → on slabs 

- volume distributed loads (mass forces) 

In calculations, the distributed load can be equated by a concentrated force, 

called resultant. 



The resultant R (Fig. 3.1) is the area of the load diagram, and it is located 

in the center of gravity (centroid, center of mass) of this diagram. 

Fig. 3.1 

- on bars: p [force/length] units: [kN/m], [daN/cm]….. 

- on slabs: p [force/area] units: [kN/m
2
], [daN/cm

2
]….. 

- in massifs : p [force/volume] units: [kN/m
3
], [daN/cm

3
]….. 

 

c) concentrated (point) moments: M [force × length] 

3.2 Supports  

a) The roller (simple support)  

 

Fig. 3.2 

- It is free to rotate and translate along 

the surface upon which the roller rests 

- The translation perpendicular to the 

surface upon which the roller rests is 

prevented (Fig. 3.2) 

- The reaction force RV is always a 

single force that is perpendicular to the 

surface upon which the roller rests 

b) The pinned support (hinge) 

 

Fig. 3.3 

- It will allow the structural member to 

rotate, but not to translate in any 

direction (Fig. 3.3) 

- The reaction forces RV and RH are 

always two forces acting perpendicular, 

respectively tangent to the surface upon 

which the hinge rests.  



 c) The fixed (built-in) support  

 

Fig. 3.4 

- A fixed support does not permit 

rotation and translations in any direction  

- There are 3 reactions: vertical and 

horizontal reactions RV and RH and a 

fixed end moment M (Fig. 3.4) 

 

   All construction elements should be in equilibrium under the external 

actions and reactions from supports. 

In plan we may write 3 equations of equilibrium: 

- Vertical equilibrium: total forces acting upward = total forces acting 

downward 

- Horizontal equilibrium: total forces acting to the right = total forces acting to 

the left 

- Moment equilibrium: total moments rotating clockwise = total moments 

rotating anticlockwise 

Having three available equations of equilibrium, we may solve a system which has 

up to three unknown reactions. That’s why from statically point of view we met: 

- statically determinate structures (isostatic): 

 

Simply supported beam  

 

Cantilever 

 Simple supported beam with free ends 

(overhanging beams) 

 

Simply supported frame 

 



The number of unknown reactions is exactly equal to the number of available 

equations of equilibrium, three ( ∑� = 0 ; 	∑� = 0 ;∑� = 0 ) 

- statically indeterminate structures (hyperstatic): the number of the 

reactions from supports is greater than the number of the equilibrium 

equations. 

 

- unstable structures: the number of the reactions from supports is smaller 

than the number of the equations of equilibrium. 

 

 

 

 

3.3 REACTIONS 

Considering the hypothesis of the small deformations, the equations of 

equilibrium may be written on the initial undistorted, undeformed member, acting 

like a rigid body (Fig. 3.5). 

The 3 equations which will be used are: 	 ∑� = 0 ; 	∑� = 0 ;∑� = 0 

 

Fig. 3.5 



�� = 0 → �� = 0:	��� − � = 0 => ��� = � 

⊕				
		(Forces acting to the right are positive) 

����
�

= 0 → 
 ∙ � − ��� ∙ � = 0 => ��� = 
 ∙
�
�  

⊕⤸	(The clockwise moment is arbitrarily taken as positive) 

����
�

= 0 → ��� ∙ � − 
 ∙ � = 0 => ��� = 
 ∙
�
�  

Verification: 

�� = 0 → �� = 0:	− ��� + 
 − ��� = 0														√			�� 
↓⊕ (Forces	acting	downward	are	positive) 

 3.4 THE STATIC DEFINITIONS OF INTERNAL STRESSES 

(INTERNAL CONCENTRATED FORCES AND MOMENTS) 

We consider a beam in static equilibrium under the action of external forces and 

reactions. 

 

 
 

 

Left part (I) Right part (II) 

 

Fig. 3.6 



We may find the internal stresses, using the method of sections. We cut the bar 

(Fig. 3.6) with a section n-n perpendicular to the longitudinal bar axis Gx, 

obtaining 2 separate parts: left part (I) and right part (II). 

Assuming the left part is removed, to assure the equilibrium of the right part, on 

the face of this part we have to introduce internal stresses that replace the action of 

the removed part (left). These internal stresses are reduced in the cross section 

centroid (of the right part) to: 

- an axial force N (tangent to the longitudinal bar axis) 

- a shear force Vz (perpendicular to the longitudinal bar axis) 

- a bending moment �� 

If instead the left part I, the right part II is removed, the internal stresses are 

introduced on the left part in the same manner, but opposite to the first case. 

The internal stresses were introduced on each face with the positive convention. 

Let’s define these stresses and see their positive signs: 

 

Axial force N: is the algebraic sum of 

all forces acting longitudinal (parallel) 

to the bar axis, taken from the left or the 

right side, from the section considered. 

It is positive when it produces tension in 

the cross section.  

Shear force V: is the algebraic sum of 

all forces acting transverse 

(perpendicular) to the bar axis, taken 

from the left or the right side, from the 

section considered. It is positive when 

on the left it acts upward and contrary.  

Bending moment M: is the algebraic 

sum of the moments of all forces taken 

from the left or the right side, from the 

section considered, taken about the 

centroid of the cross section. It is 

positive when it produces tension in the 

bottom fiber of the cross section. 

 



3.5. DIAGRAMS OF STRESSES 

Each cross section is positioned along the bar by the variable x. The internal 

stresses are also functions of this variable x. The diagrams of stresses are even the 

graphs of these functions. 

To draw these diagrams it is enough to write the analytical expression of N(x), 

Vz(x) and My(x) and then to represent the graphs of these functions. But, this 

procedure must be applied on different intervals, where external loads or reactions 

act. 

Example: 

A-B: 0≤ � ≤ 1 

N(x)=0 

⊕↑ 	 ��(�) = −� ∙ � = −2� 
⊕⤤ 	����� = −� ∙ � ∙

�

�
= −�� 

B-C: 1 ≤ � ≤ 2 

N(x)=0 

����� = −� ∙ 1 = −2 

����� = −� ∙ 1�� − 0,5� = −2� + 1 

C-D: 2 ≤ � ≤ 3 

N(x)=0 

����� = −� ∙ 1 = −2 

����� = −��� − 0,5�+ �
= −2� + 3,4 

D-E: 3 ≤ � ≤ 4 

�(�) = −� = −12�� 

����� = −� ∙ 1 + 
 = 4�� 

����� = −��� − 0,5� + � + 
�� − 3� = 4� − 14,6 



3.6. RELATIONSHIPS BETWEEN LOADS AND STRESSES 

We consider a differential element dx along the length of a beam (Fig.3.7). The 

ends of the element are subject to shear forces and moments which are represented 

with their positive directions. On this differential element a uniformly distributed 

load pn acts, considered positive when it acts downward.  

 

 

Fig.3.7 

We write the vertical equilibrium: 

−V	 + p
 ∙ d� + V	 + dV	 = 0 

	���
��

= −�
	    (3.1) 
The above relation (3.1) represents the 

first differential relationship between the 

shear force and load and it can be 

enunciated as: the rate of change of 

shear force, which is the slope of the 

shear diagram, is minus the intensity of 

the distributed load acting transverse to 

x axis.  

 

 

 

 

Fig.3.8 

Similarly (Fig.3.8), from horizontal 

equilibrium: 

−N + p� ∙ d� + N + dN = 0 

 
	��
��

= −�� 	     (3.2) 
This relation (3.2) represents the second 

differential relationship between the 

axial force and load and it can be 

enunciated as: the rate of change (the 

first derivate) of axial force, which is the 

slope of the axial force diagram, is 

minus the intensity of the distributed 

load acting along x axis. 

Writing now the moment equilibrium about the centroid of the differential 

element (Fig.3.7): 



M� + V� ∙
��
2

+ V	 ∙
dx
2

+ dV	 ∙
dx
2

− M� − dM� = 0 

Neglecting the second order term, as dx →0 =>	�� ∙ �� = ���		 =>  

	���

��
= ��	    (3.3) 

This final relation (3.3) represents the third differential relationship between the 

bending moment and shear force and it can be enunciated as: the rate of moment, 

which is the slope of the moment diagram, is equal to the shear force.   

These relations (first and last) may be written also: 

 
����

���
=

���

��
= −�
          (3.4) 

To understand better these differential relations we may say that if �
(�) is a 
polynomial of degree “n”, ��(�) is a polynomial of degree “n+1”, respectively 
��(�) is a polynomial of degree “n+2” (Fig.3.9). 

Fig.3.9 

3.7. UNIT STRESSES  

In the previous paragraphs we have seen that to determine the internal 

forces, the procedure to separate parts of the body, to exteriorize internal forces 

and to write equilibrium equations, are the main procedure in Mechanics of 

Materials. The internal forces in the sectioned plane represent the resultant of small 

contact forces that were released due to sectioning of that element (Fig.3.10). 



 

Fig.3.10 

If an infinitely small area dA (Fig.3.11) is considered on the sectioned 

surface and the resultant force d�
 is calculated for this area, it can be assumed that:  
(1) d�
 is applied in the centroid of dA   
(2) if dA is very small, d�
 can be considered uniformly distributed on dA. 

 

Fig.3.11 

The distributed force on dA is: 

		�			
 =
��������	

��
			        (3.5)      

The new notion �
 is called unit stress. If dA=1=> �
 = d�
, so the unit stress 
is the interior force uniformly transmitted through the unit surface (area). It is 

measured in ������
����

� units:���
��
�, ����

���
� , ��
��. 



The unit stress �
 is a vectorial notion, which can be decomposed in 2 main 
components (Fig.3.11): 

- a normal component   , called normal unit stress or direct stress 

- a tangent component ! , called tangential unit stress or shear stress 
We observe that �� = "�� + #�� and both components have a first index 

which indicate the direction of the axis which is perpendicular to the cross section. 

The tangential stress #� can be decomposed (Fig.3.11) into 2 components:  
#�� parallel to Gz axis and #�� parallel to Gy axis. 

The orientation of " and	# from figure (Fig.3.11) is the positive one:  "� is 
positive if it comes from the cross section. 

3.8   THE STRENGTH CALCULATION OF STRESSES 

(THE REDUCTION OF THE UNIT STRESSES IN THE CROSS SECTION) 

 

Fig.3.12 

The resultant of the unit stress p on the differential area dA , p·dA , must be 

reduced into two significant points of the cross section (Fig.3.12): 

- the center of gravity (centroid) G, where the resultant of the normal stress 

σx·dA will be reduced 

- the shear center C, where the resultant of the tangential stress τx·dA will be 

reduced 

 

 



3.8.1 The reduction of the normal stress σx 

 

Fig.3.13 

 

Reducing (σx·dA ) in G (Fig.3.13), 

we obtain: 

- an elementary force:  

�� = "� · �$	   

- an elementary moment: 

��! = �"� · �$� · %     

 

  

y = ρ · cosα                  

z = ρ · sinα      

 

The elementary moment dMi is decomposed into: 

 ��� = 	��! · &'() = �"� · �$� · % · &'() 
 ��� = 	��! · *+&) = �"� · �$� · % · *+&)  

So, the elementary components of the moment dMi , about Gy and Gz axis are:  

   ��� = "� 	 · � · &'() 
   ��� = "� 	 · , · *+&)  

Extending all the elementary forces dN on the entire area A, we obtain finally the 

axial force: 

	� = - "� · �$	
�

                    (3.6) 

Similarly, the elementary moments give the bending moments: 

�� = - "� · � · �$	
�

       (3.7) 

�� = - "� · , · �$	
�

       (3.8) 



!!! The bending moments have the vectors orientated along Gy and Gz axis 

(perpendicular to the longitudinal bar axis Gx). 

 

The positive orientation 

(Fig.3.13) of the axial force N 

and the bending moments My 

and Mz on the cross section is: 

 

Fig.3.14 

3.8.2 The reduction of the tangential stress τx 

 

Fig.3.15 

Reducing (τx·dA) in C (Fig.3.15), 

through its components (τxz·dA) 

(τxy·dA),  we obtain: 

- the elementary forces:  

��� = #�� · �$	  

��� = #�� · �$  

- the elementary moment: 

��� = ���" − ���� = #�� ·
�$�, − ,#� − #�� · �$�� − �#�     
 

Extending on the entire area A, we obtain the shear forces:    

�� = - #�� · �$	
�

                    (3.9) 

�� = - #�� · �$	
�

                   (3.10) 

Similarly, the elementary moment give the torsion moment (torque):  

�� = - [#��(y	– y$) 	− 	 #��(z	− 	z$)]dA
�

   (3.11) 

!!!The torque Mt has the vector orientated along �. axis (the longitudinal axis of the 
shear center).    



 

The positive orientation 

(Fig.3.15) of the shear forces 

Vz and Vy , and the torsion 

moment Mt on the cross section 

is: 

 

Fig.3.16 

The internal stresses written in this way, from strength calculation is called 

the stress calculation from interior, while the static calculation is called 

calculation from exterior. 

3.9. BARS ACTIONS (SOLICITATIONS) 

a) Simple actions (when a single stress acts in the cross section) 

- centric (axial) tension : N>0, (Vz = Vy =0, My = Mz = Mt =0) 

- centric (axial) compression : N<0, (Vz = Vy =0, My = Mz = Mt =0) 

- pure shearing : Vz ≠0 or Vy ≠0,  (N =0, My = Mz = Mt =0) 

- pure bending : My ≠0 or Mz ≠0, (Vz = Vy =0, N = Mt =0)  

- pure torsion : Mt ≠0, (Vz = Vy =0, My = Mz = N =0) 

b) Compound actions (when more stresses act in the cross section) 

- eccentric tension or compression : N and My and/or Mz 

- pure skew (oblique) bending : My and Mz 

- shearing with torsion: Vz and/or Vy and Mt  

- oblique bending with shearing : My and Mz, Vy and Vz 

- eccentric tension or compression with shearing: N and My and/or Mz , Vy and Vz 

- eccentric tension or compression with shearing and torsion:  N and My and/or Mz, 

Vy and Vz and Mt 

 

 



 3.10 APPLICATIONS FOR DIAGRAMS OF STRESSES 

3.10.1 Represent the diagrams of stresses for the simply supported beam from 

Fig.3.17 

 

Fig.3.17 

Reactions: 

(1) ∑� = 0: 	��� = 0			 
(2) �∑��� = 0:		� ∙ 7 ∙ 3,5 − ��� ∙ 5 = 0  → ��� = 49 kN 
(3) �∑��� = 0:	− � ∙ 7 ∙ 1,5 + ��� ∙ 5 = 0  → ��� = 21 kN 
Verification: 

 ∑� = 0: −���−��� + � ∙ 7 = 0			              OK 
Stresses: 

Writing efforts will be traversing bar from left to right. In the sections “ i ” where 

concentrated forces act (horizontal and vertical), the axial force N and the shear 

force V will be written in sections located infinitely left  “ i
’ 
” and infinitely right 

“i
’’ 
” section, with respect to the section “ i ”. Bending moment M will be written 

directly into the section.  



For a better understanding of writing efforts in a section, in this application efforts 

will be written in each section only taking the first left and then the right section, 

obviously obtaining the same results. 

Axial force N 

With no forces tangential or parallel to the longitudinal axis of the bar, axial force 

is zero throughout the bar. 

Shear force V 

 ��,, = ��� = 21��  (taken from the left) 

 ��,, = � ∙ 7 − ��� = 21��  (taken from the right) 

 ��, = ��� − � ∙ 5 = −29��  (taken from the left) 

 ��, = −��� + � ∙ 2 = −29��  (taken from the right) 

 ��,, = ��� − � ∙ 5 + ��� = 20��  (taken from the left)  

 ��,, = � ∙ 2 = 20��  (taken from the right) 

Bending moment M 

 �� = 0	 (taken from the left) 
 �� = −� ∙ 7 ∙ 3,5 + ��� ∙ 5 = 0		(taken from the right) 
 �� = −� ∙ 5 ∙ 2,5 + ��� ∙ 5 = −20	��/		(taken from the left) 
 �� = −� ∙ 2 ∙ 1 = −20��/		(taken from the right) 
In the free end V = M = 0. 

Diagrams (graphs) of stresses: 

- N diagram is represented with positive values (tensile stress) above the reference 

line, and negative values (compression) below the reference line 

- V diagram is represented with positive values above the reference line, and 

negative values below the reference line 

- M diagram is always represented on the tension fiber (for convenience, the 

positive values are below the reference line, and the negative values are above the 

reference line) 



Returning to our problem, with the values obtained the diagrams of stresses 

are represented. It is noted that V is zero in a section (between A and B) whose 

position is unknown. Given the differential relationship (3.3) that exists between V 

and M, in the section where V is zero, M will have an extreme value. To calculate 

the extreme value, we must first determine where is this section of V=0. We denote 

the distance from the support A to that section with “x”, and we write the 

condition that in that section V (x) = 0. 

 ���� = ��� − � ∙ � = 0 → � = 2,1/ 

With this known distance, the maximum moment is: 

 ���� = ���� = −� ∙ � ∙
�

�
+ ��� ∙ � = 22,05	��/ 

From the graphs we see again the connection between the distributed load q, 

V and M, in that V is a high degree (linear variation) with respect to the uniformly 

distributed load q (constant), and M is with a high degree (parabolic variation) with 

respect to V, having a maximum section where V is zero. In the section where a 

concentrated force acts, V diagram will present a sudden jump, in the amount equal 

to the force. 

3.10.2 Represent the diagrams of stresses for the simply supported beam from 

Fig.3.18 

Reactions: 

(1) ∑� = 0: 	−�" − ��� + �� = 0			→ ��� = 200 kN 
(2) �∑��� = 0:		� ∙ 8 ∙ 1 − ��� ∙ 7 + 
 ∙ 7 − �% = 0  → ��� = 160 kN 
(3) �∑��� = 0:	− � ∙ 8 ∙ 6 + ��� ∙ 7 − �% = 0  → ��� = 300 kN 
Verification: 

 ∑� = 0: −���−��� + � ∙ 8 + 
 = 0			              OK 
Axial force N 

 �",, = �" = 250�� = ��, 
 ��,, = �" − �� = 200�� = ��,  

 ��,, = �& = 0 



 

Fig.3.18 

Shear force Vz 

 �",, = 0 

 ��, = −� ∙ 3 = −120�� 
 ��,, = −� ∙ 3 + ��� = 180��   

 �� = −� ∙ 8 + ��� = −20�� = ��, 

 ��,, = 0 = �&,   

Bending moment My 

 �",, = 0		   

 �� = −� ∙ 3 ∙ 1,5 = −180��/ 

 �� = −� ∙ 8 ∙ 4 + ��� ∙ 5 = 220��/		 
 �� = �% = 180	��/ = �&		 
Determine the position of the section in which V = 0: 



 ���� = ��� − � ∙ � = 0 → � = 7,5/ 

The maximum moment is: 

 ���� = ���� = −� ∙ � ∙
�

�
+ ����� − 3� = 225	��/ 

3.10.3 Represent the diagrams of stresses for the cantilever from Fig.3.19 

 

Fig.3.19 

On cantilever we can write the stresses from the free end to the fixed support (in 

this application, from the right), such that the calculation of the reactions is not 

necessary. The axial force N is zero in the entire bar. 

Shear force V 

 �� = 0 

 ��,, = � ∙ 2 = 120�� 

 ��, = � ∙ 2 − � = −120��   

 ��,, = � ∙ 6 − � = 120��   

Bending moment M 

 �� = 0	  

 �� = −� ∙ 2 ∙ 1 = −120��� 

 �� = −� ∙ 6 ∙ 3 + � ∙ 4 = −120���		 

	���� = −� ∙ 4 ∙ 2 + � ∙ 2 = 0 


