
Chapter 2 

GEOMETRIC ASPECT OF THE STATE OF SOLICITATION 

 
 

2.1 THE DEFORMATION AROUND A POINT 

 

2.1.1 The relative displacement 

 

Due to the influence of external forces, temperature variation, magnetic and 

electric fields, the construction bodies are deformed and distorted (modifying their 

dimensions and shape). The geometric aspect studies this deformation as a 

geometrical phenomenon, produced by the relative displacement of the points from 

the studied body.  

To observe the modifications of geometrical nature produced by external causes, 

we consider a body into an orthogonal rectangular system of axis, with the origin 

in O (Fig.2.1). 

 

 

Fig.2.1 

 

Due to the external 

forces that subject 

the body, point O 

reaches the position 

O’. The vector OO’ 

is called relative 

displacement , and: 

dOO =
'

 

 

 

Projecting d  on the axis Ox, Oy and Oz, we obtain the components of the relative 

displacements: on Ox axis it is noted with u, on Oy axis it is noted with v and on 

Oz axis it is noted with w. 

 



From figure 2.1, we may write: 

 
d

u
=αcos  , 

d

v
=βcos  , 

d

w
=γcos       (2.1) 

Squaring and then adding these relations, we get: 
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The relative displacement is: 
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Function the ratio between the relative displacements and the initial dimensions of 

the body (for bars, the cross section dimensions), the problems from Structural 

Mechanics are studied with: 

a. The 1
st 
order Theory: if the relative displacements are very small with 

respect to the initial dimensions of the construction body. In this category are 

placed most of the problems from Mechanics of Materials. In this situation, the 

mode of supporting and loading of the body is not influenced by the structure 

deformation, being defined for the initial undeformed position of the structure. 

b. The 2
nd 
order Theory: if the relative displacements are comparable with 

the initial dimensions of the construction body. 

The displacement of a point with respect to its initial position, called relative 

displacement, defined above, represents the exterior aspect of the deformation of a 

body. The interior aspect is given by the modification of the volume and the shape 

of the body, which is a complex deformation, but it can be illustrated by two 

simple deformations (strains): 

- the elongation (linear strain) 

- the sliding (angular strain) 

 

2.1.2 The elongation  

 

The elongation is a linear deformation which will be analyzed on an axis Ox 

(Fig.2.2.a). A segment from a deformable body is in the initial position AB. After 

deformation, this segment reaches the position A’B’, due to the hypothesis of the 

continuity of displacements inside a body. The initial segment AB has the length l 

(Fig.2.2.a), which becomes l+∆l for the segment A’B’. This increased length of the 

segment A’B’ makes evident the lengthening (elongation) ∆l of the initial segment 

AB. Therefore the elongation represents the quantity with which the initial length 

of a segment is modified.   By convention ∆l is positive if it is a lengthening, 

respectively negative if it is a shortening. 



As the elongation ∆l depends on the initial length of the segment, it isn’t an 

adequate measure to characterize the linear deformation. That’s why it is 

introduced a new notion called specific elongation, which represents the total 

lengthening of the unit length (that’s why it is named also unit elongation): 
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Fig.2.2 

We observe that for the unit length l = 1, the specific elongation εx is even ∆l: 

 l
lx

∆=
=1
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The specific elongation εx is a non-dimensional notion and the above relation is 

valid only if ∆l is uniformly distributed along the entire length l, so only if εx = 

const. Hence, the total lengthening isn’t produced by identical lengthening of each 

unit of length. 

That’s why we consider again a differential segment MN of length dx on the same 

axis Ox (Fig.2.2.b). The displacement of point M is u, but the one of point N will 

vary with the differential measure du, so the displacement of N will be u+du. The 

total elongation of the differential length dx will be:  

 dudx =∆          (2.6) 



Considering that this total elongation is uniformly distributed on the differential 

length dx, the specific elongation will be now: 
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In the relation written above it was considered that u is function only of x. In 

reality it is function of all three coordinates u = u(x,y,z) and the differential du has 

the general expression: 
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But as the segment MN is on Ox axis, the single coordinate that varies is x and the 

other derivatives, with respect to Oy and Oz axis, are 0. So, du will be: 
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And εx is: 
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Similarly, the specific elongations along Oy and Oz axis may be written: 
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Relations (2.10)…(2.12) are the first three Cauchy’s relations representing the 

differential relations between the specific elongations and the components of the 

relative displacement. 

 

2.1.3 The sliding (shear strain) 

 

Cause by the fact that the sliding is an angular deformation it will be analyzed in a 

plan from a deformable body. We consider a differential rectangle in a plan xOz , a 

corner of the rectangle being even the origin O (Fig.2.3.a). Admitting that point O 

is fixed, point A will reach a position perpendicular to Ox axis A’, AA’ = dw , 

respectively point B will reach a position perpendicular to Oz axis B’, BB’ = du. 

This deformation doesn’t change the rectangle area, only its shape, transforming it 

into a parallelogram.  

As a result of this deformation the initial straight angle xOz (Fig. 2.3.a,b) is 

modified, by the rotation of Ox axis with the angle αxz and respectively Oz axis 

with αzx. 



 
   a.      b. 

Fig.2.3 

Assuming the plan is made from strips parallel to x and z axis (Fig.2.3b), we 

observe that the above rotations are produced in fact by relative translations of the 

strips, called slidings. Hence, the angles αxz and αzx are a measure of these slidings. 

Their sum is the specific sliding γxz : 

 
zxxzxz

ααγ +=          (2.13) 

The specific sliding can be defined as the modification of the initial straight angle. 

The specific sliding (shear strain) is positive if decreases the initial straight angle 

(it becomes an acute angle), respectively negative if it increases this (becomes an 

obtuse angle). 

Taking into account the hypothesis of the small deformations, the angles αxz and αzx 

may be written: 

 
xz xz

w
dx

dw wxtg
dx dx x

α α

∂

∂∂
≅ = = =

∂
      (2.14) 

and 

 
zx zx

u
dz

du uztg
dz dz z

α α

∂

∂∂
≅ = = =

∂
      (2.15)  

Replacing in (2.13) we obtain: 
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Similarly, the specific slidings in xOy plan and zOy plan are: 
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Relations (2.16)…(2.18) are the other three Cauchy’s relations representing the 

differential relations between the specific sliding and the components of the 

relative displacement. 

 

 
 

Augustin-Louis Cauchy (1789-1857) 
 

2.2 GEOMETRICAL CHARACTERISTICS OF THE CROSS SECTION 

 

To use the notion of cross section in all calculations made in Mechanics of 

Materials, certain important characteristics should be known. These geometrical 

characteristics may be grouped, approximately, in two categories: 

 1. Characteristics that define the relative position of the system of reference 

yOz either it has an arbitrary origin, or identical to the cross section centroid G or 

the shear center C. In this category there are: the area, the centroid G, the shear 

center C, but also the cross section shape which is very important in the 

calculation of the construction members at certain solicitations. 

 2. Characteristics connected to the hypothesis of the movement of the cross 

section, which have also a mechanical interpretation. In this group the following 

characteristics are included: the first moment of area (static moment): axial and 

sectorial, the second moments of area (moments of inertia): axial and sectorial, the 

radius of gyration (radius of inertia). 



 

2.2.1 The area. The first moment of the area.  The centroid 

 

We consider a certain cross section in an orthogonal system of axis y1O1z1 , with 

the origin in O1 (Fig.2.4). The cross section of area A is made from infinite 

differential areas dA. 

a. The area A is: 

 ∫=
A

dAA          (2.19) 

Therefore, the area is the infinite sum of all the elementary areas dA, on the entire 

area A. It is always measured in [length]
2
 units: cm

2
 , m

2
 , mm

2
.  

b. The first moment of the area (static moment): 
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The static moment of an area with respect to an axis, is the infinite sum of all 

products between that area and the distance between that area centroid and the 

respective axis (Fig.2.4). The static moment can be positive or negative and it is 

always measured in [length]
3
 units: cm

3
 , m

3
 , mm

3
. 

 
     Fig. 2.4 

 

c. The centroid (center of gravity) position is given by its coordinates Gy  and
G
z  

(Fig.2.4), where with G we note the centroid. 



We write Varignon’s theorem, which says that the moment of the entire area is 

equal to the sum of all moments of the elementary areas: 
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Pierre Varignon (1654-1722) 
Respectively 
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From (2.21) and (2.22) the centroid coordinates are: 
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and 
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These coordinates are always measured in [length] units: cm, m, mm. 

Observing relations (2.23) and (2.24) we may conclude that if the point O1 is 

identically to the centroid G, 
1
y =

1
z = 0 and implicit Gy =

G
z = 0. This means that in 

this case the static moments are null S y  = S z  = 0, and these axes: y and z are 

called central axis. 

!!! If with respect to an axis the static moment is null, that axis is a central axis. 

If the cross section is made up of many sections having the area Ai and the centroid 

position Gi known (Fig.2.5), the integrals from (2.19), (2.20), (2.23) and (2.24) are 

transformed into finite sum: 

 



 
Fig.2.5 
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2.2.2 The second moment of the area (area moment of inertia) and other 

geometrical characteristics 

 

The area moment of inertia represents the cross section inertia to its movement of 

rotation around an axis included in its plane. The second moment of area is a 

measure of resistance to bending of a loaded section.   

In engineering contexts, the area moment of inertia is often called simply "the" 

moment of inertia even though it is not equivalent to the usual moment of inertia 

(which has dimensions of mass times length squared and characterizes the angular 

acceleration undergone by a solids when subjected to a torque). 

 

We may define: 

 

a. The axial moment of inertia of an area A (Fig.2.6) with respect to an axis 

comprised in its plane represents the infinite sum of all products between the 

elementary area dA and the square of the distance between this area and that axis.  

With respect to the central axis G y and G z (Fig.2.6) the moments of inertia are: 

 ∫=
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and  

 ∫=
A

z
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Fig.2.6 

! The axial moments of inertia 
y
I  and 

z

I  are always positive and they are measured 

in [length]
4
 units: cm

4
 , m

4
 , mm

4
. 

b. The centrifugal moment of inertia (the product moment of area) of an area A 

(Fig.2.6) with respect to a system of axis comprised in its plane represents the 

infinite sum of all products between the elementary area dA and the distances 

between this area and that rectangular system of axis. 

With respect to the central system of axis y G z  (Fig.2.6) the centrifugal moment 

of inertia is: 

 
y z

A

I yzdA= ∫          (2.32) 

The centrifugal moment of inertia reflects through value and signs the cross section 

repartition in the fourth quadrants of the system of axis (Fig.2.6). It is also 

measured in [length]
4
 units: cm

4
 , m

4
 , mm

4
.  

! While 
y
I  and 

z

I  are always positive, the centrifugal moment of inertia 
y z
I  may be 

positive, negative or even zero. 

Proprieties of the centrifugal moment of inertia: 

- If the cross section has at least an axis of symmetry (Fig.2.7.a), the centrifugal 

moment of inertia 
y z
I  is equal to zero. 

Assuming the cross section from figure 2.7.a can be described as a pair of 

elementary areas, symmetrically disposed, the centrifugal moment of inertia 
y z
I is: 
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b. 

Fig.2.7 

- If the system of axis y G z is rotated about G with 90
0
 in the clock-wise 

direction (Fig.2.7.b) the centrifugal moment of inertia changes its sign. 

From figure 2.7.b we may write the relations between the initial system y G z  and 

the rotated one 
90
y G 90z : 

 
90
y = z  ; 90z  = y    

Replacing in the centrifugal moment of inertia: 
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c. The polar moment of inertia 
It measure also the cross section inertia, but the rotation is made around an axis 

perpendicular to the cross section plane, which intersect the cross section in the 

centroid G. 

From figure 2.6 we may write: 

 222
yz +=ρ          (2.33) 

The polar moment of inertia, written similar to the axial moment of inertia, will be 

with (2.33): 
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Result: 
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From (2.34) we may conclude that the sum of the axial moments of inertia with 

respect to rectangular axis with the same origin in G (Fig.2.6) is an invariant to the 

rotation of the system of axis. 

d. The radius of gyration (radius of inertia) 

If we want to increase the moment of inertia of a cross section with respect to an 

axis, then we move it away from this, without increasing the cross section area. 

As the material consumption is directly proportional to the cross section area, the 

above solution is as economic as the ratio I/A is bigger.  

The characteristic connected to the moment of inertia of a cross section with 

respect to an axis is the radius of gyration.  

 
Fig.2.8  

It is defined (Fig.2.8) as the 

distance from an inertia 

axis to a fictitious point Q, 

in which if the entire cross 

section area A is 

concentrated, the moment 

of inertia (punctual) with 

respect to that axis is equal 

to the real moment of 

inertia. 

According to this definition we may write the equality: 
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From (2.35) the radius of gyration with respect to G y  axis is: 

 
A

I

i
y

y
=                                   (2.36) 

Similarly with respect to the other axis G z : 
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The radius of gyration is always measured in [length] units: cm, m, mm. 

e. The strength modulus 
The ratio between the axial moment of inertia and the distance to the farthest point 

of the cross section from that axis is called strength modulus. 

In figure 2.6 we note the distances from G y  axis till the extreme points: superior 

sz  and inferior iz , and the strength modulus with respect to G y  axis in these points 

are: 
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The strength modulus can be positive or negative and it is always measured in 

[length]
3
 units: cm

3
 , m

3
 , mm

3
. 

 

2.2.3 Moments of inertia for some simple cross sections 

 

a. Rectangle 

 
Fig.2.9 

We consider the rectangular 

section from figure 2.9, for 

which we want to calculate 

through direct integration the  

moments of inertia with respect 

to O
1
y  and  O 1z  axis, tangent to 

the rectangle sides, and then  

with respect to the central axis G

y  and  G z . 

We consider an elementary area 

dA, a rectangular strip parallel to 

G y axis, of width b and height d

z , so thatdA b d z= ⋅ . 

 

With respect to O1 1
y  and O1 1z , 

1
dA b dz= ⋅  (Fig.2.9) and the area, the static 

moments and the centroid coordinates will be: 
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The axial moments of inertia with respect to O1 1
y  and O1 1z  are: 
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and respectively:  
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The centrifugal moment of inertia: 
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With respect to the central system of axis yG z , 
1

dzbdA ⋅=  (Fig.2.9) and the same 

characteristics are now: 
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Similarly:  
 0

z

S =  

We found a result that was obvious, because G y  and G z  are even the central axis, 

and we have seen in paragraph 2.2.1 that with respect to these axis 0
y z
S S= = . 

Implicit: 

 0
G G
y z= =  

The axial moments of inertia with respect to G y  and G z  are: 
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Similarly: 
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The centrifugal moment of inertia: 

 0
y z
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Relation (2.41) results from the first property of the centrifugal moment of inertia, 

as the rectangle has 2 symmetry axes. 

 

 

 



b. Triangle 

 
Fig.2.10 

 

Let’s consider the triangle 

from figure 2.10 of width b 

and height h. We want to 

calculate the moments of 

inertia with respect to O1 1
y  

and O1 1z  axes, with the 

origin O1 in the triangle 

vertex, then with respect to 

O2 2
y  and O2 2z  axes and 

finally with respect to the 

central axis of the triangle, G

y  and G z .  

 

We consider an elementary area dA as a rectangular strip parallel to G y axis, with 

the width bz and height d z , so that
z

dA b d z= ⋅ . 
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1
y
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Similarly we may write the moments of inertia
1
z
I , 

2
z
I  and 

z

I . 

We may keep in mind the moments of inertia of the triangle, with respect to the 

central axes: 
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c. Circle 

 
Fig.2.11 

 

The elementary area dA (Fig.2.11) 

is comprised between two radius 

situated to an angle dφ and two 

concentric circles of radius ρ and 

ρ+d ρ: 
dA d dρ ρ ϕ= ⋅ ⋅  

With the limits of integration: 
0 Rρ≤ ≤  

and 
0 2ϕ π≤ ≤  

and integrating on the entire circle 

surface, we get: 
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The distances from the elementary area centroid to G z  axis, respectively G y axis 

are: 

 cosy ρ ϕ=   

 sinz ρ ϕ= −  

The axial moments of inertia with respect to G y  and G z  are: 
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So, the moments of inertia of the circle, with respect to the central axes, are: 
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2.2.4 The variation of the moments of inertia with the translation of axes 

 

Let’s consider a plane cross section of area A with an orthogonal system of axis

yOz . Knowing the values of the moments of inertia 
y
I  and

z

I , we want to 

determine the moments of inertia 
1
y
I  and 

1
z
I with respect to O1 1

y  and O1 1z  axis, 

parallel to the first axis (Fig.2.12). 



 
Fig.2.12 
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With respect to O1 1
y  axis, the moment of inertia is: 
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Similarly, with respect to O1 1z  axis, the moment of inertia is: 
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The centrifugal moment of inertia is: 
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In the above relations regarding
1
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I ,

1
z
I and

1 1
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y
S  and 

z

S  are static moments with 

respect to O y and O z  axis. If these axes are even the central axes of the cross 

section (O y ≡G y  and O z ≡G z ), these static moments are zero:  

 
y
S = 

z

S  = 0 

The relations become: 

 
1

2

y y
I I a A= + ⋅         (2.44)  

 
1

2

z z

I I b A= + ⋅         (2.45)  

 
1 1
y z y z
I I ab A= + ⋅         (2.46)  

Relations (2.44), (2.45) and (2.46) represent the formulas of the moments of inertia 

with respect to translated axes, called Steiner’s formulas.  Each first term from 

relations represent the moment of inertia with respect to the centroid axes G y  and 



G z , while the second term is the translation term equal with square distance 

between the translated axes multiplied by the corresponding area. 

 

 
 

Jakob Steiner (1796-1863) 

 

Inversely, if we have the moments of inertia with respect to a system of axes 
1
y O1

1
z , the moments of inertia with respect to the centroid axes y G z are: 

 
1

2

y y
I I a A= − ⋅          

 
1

2

z z

I I b A= − ⋅          

 
1 1

y z y z
I I ab A= − ⋅  

Let’s check these formulas for the rectangular section. From 2.2.3.a paragraph, we 

got (Fig.2.9): 

 
1

3

3
y

bh
I = , 

1

3

3
z

b h
I = , 

1 1

2 2

4
y z

b h
I =   

Replacing in the relation written above (see Fig.2.9): 

 
23 3

3 2 12
y

bh h bh
I bh

 
= − ⋅ = 

 
 

 
23 3

3 2 12
y

b h b b h
I bh

 
= − ⋅ = 

 
 

 
2 2

0
4 2 2

y z

b h b h
I bh

  
= − ⋅ =  

  
 

We found the relations (2.39), (2.40) and (2.41). 



 

2.2.5 The variation of the moments of inertia with the rotation of axes  

 

Let’s assume that for a cross section, with respect to the central system of axes y G

z , the moments of inertia are known and we intent to compute the moments of 

inertia with respect to an orthogonal system of axes y
α
G z
α
 (Fig.2.13), rotated with 

an angle α (α > 0 for clockwise sense).  

From Fig.2.13.b: 

 GC y= , CD z= , GB y
α

= , DB z
α

=  

 
cos

y
GA

α

= , AC ytgα= ,  

 AD CD AC z ytgα= − = −  

 sin ( ) sinAB AD z ytgα α α= = −  

 
   

  a.       b. 

Fig.2.13 

 

 

( )2 2
sin sin 1 sin sin cos sin

cos cos cos

y y y
GB GA AB z ytg z zα α α α α α α

α α α

= + = + − = − + = +  

Finally the coordinates in the rotated system of axes, are: 

 cos siny y z
α

α α= +         (2.47) 

 cos ( ) cosDB AD z ytgα α α= = −  

 sin cosz y z
α

α α= − +         (2.48) 



The moments of inertia with respect to the rotated system of axes y
α
G z
α
are: 

( )
22 2 2

2 2
sin cos sin 2sin cos cos

y

A A A A A

I z dA y z dA y dA yzdA z dA
α

α
α α α α α α= = − + ⋅ = − +∫ ∫ ∫ ∫ ∫

Replacing (2.30), (2.31) and (2.32) we have: 
 2 2

cos sin sin 2
y y z y z
I I I I
α

α α α= + −  

In a similar manner we find the other central moment of inertia and the centrifugal 

moment of inertia: 
 2 2

sin cos sin 2
z y z y z
I I I I
α

α α α= + +  

 sin 2 cos 2
2

y z

y z y z

I I

I I
α α

α α

−

= +  

Replacing 2 1 cos2
sin

2

α

α

−

=  and 2 1 cos2
cos

2

α

α

+
= , the moments of inertia are: 

 cos 2 sin 2
2 2

y z y z

y y z

I I I I

I I
α

α α

+ −

= + −

     (2.49)
 

 cos 2 sin 2
2 2

y z y z

z y z

I I I I

I I
α

α α

+ −

= − +

     (2.50)
 

 sin 2 cos 2
2

y z

y z y z

I I

I I
α α

α α

−

= +

      (2.51)
 

Adding the first two relations we get: 
 

y z y z
I I I I
α α

+ = +  

In conclusion, the sum of the moments of inertia with respect to orthogonal axes 

having the same origin is an invariant. 

 

2.2.6 Principal moments of inertia. Principal axis of inertia 

 

The moments of inertia 
y
I
α

 and 
z

I
α

 are continuous and periodical functions of α. 

For these functions, we can find a value of α which correspond to an extreme value 

of the moments of inertia. We make the first derivative of 
y
I
α

 and we equalize it 0: 

 ( )sin 2 2 cos 2 0
y

y z y z

dI

I I I
d

α

α α

α

= − − − =  

We get, from this equation: 

 
2

2
y z

y z

I
tg

I I
α = −

−

        (2.52)

 

But also: 

 2( sin 2 cos 2 ) 2 0
2

y y z

y z y z

dI I I
I I

d

α

α α

α α

α

−

= − + = − =  



We get that 0
y z
I
α α

= , what means that axes y
α
 and z

α
are conjugated axes, so with 

respect to these axes the central moments of inertia 
y
I  and 

z

I  have extreme values. 

We shall name these axes principal axes of inertia (noted with Gy and Gz) and the 

corresponding moments of inertia are the principal moments of inertia (noted with 

Iy and Iz). 

The principal axes orientation is given by the equation:
2

2
y z

y z

I
tg

I I
α = −

−

, which has 

the solutions: 
0

2 2
i

nβ α π= +  ( 0,1, 2,.....)n =  

The first two solutions are: 
 

1 0 1 0
0 2 2n β α β α= ⇒ = ⇒ =  

 
2 0 2 0

1 2 2
2

n

π
β α π β α= ⇒ = + ⇒ = +  

where:  

 
0

2

2
y z

y z

I
arctg

I I
α

 
 = −
 −
 

 

In conclusion, the principal axes of inertia are orthogonal axes. 

We agree that 
1

2

π
β ≤  

We write another condition of extreme, for α=β1 : 

 ������

���
�
����

< 0 : 

−��� − ���2���2	� + 4����
�2	� < 0 

  

But: �� − �� = −
	���


�	��

  

 

→ 
	���


�	��

2���2	� + 4����
�2	� < 0 

→ 
����


��	��

����	2	� + �
�	2	�
 < 0	 → 	 ����


��	��

< 0 

 

This final relation tells us that the centrifugal moment of inertia ���	 and the angle 	�	must always have different signs. Always Gy is the strong axis of inertia, so: 
 �� > �� 
 

With relations (2.49), (2.50) and (2.52) the final relations for the principal 

moments of inertia Iy and Iz are: 



 ��,� =
�����

	
±

�

	
���� − ���	 + 4���	        (2.53) 

 

The principal axes of inertia are those to which the centrifugal moment of 

inertia is zero. 

If a cross section has at least one axis of symmetry, the central axes of 

inertia are identically to the principal axes of inertia. 

 

Application 

 

For the quarter-circle in the figure bellow (Fig.2.14) calculate the principal 

moments of inertia and the direction of the principal axes. 

 
Fig.2.14 

 

In the chosen reference system y�Oz� the differential element of area dA written in 

polar coordinates is: 

 �� = � ∙ �� ∙ �� 
The area A is: 

� = � �� = � � ∙ �� ∙ �� = � � ∙ ��
�

�
� ��

�
	�

�
=

��	

4��
 

The distances from the centroid of the differential element to the axes Oz�, 

respectively Oy� are: 

 y� = � ∙ ���� z� = −� ∙ �
�� 



The second moments of area (static moments) about Oy�	axis, respectively Oy� 

axis, are: 

��
�

= � z��� = −� � ∙ �
�� ∙ � ∙ �� ∙ �� = −� �	��
�

�
� �
����

�
	�

�
= −

��

3��
 

��� = � y��� = � � ∙ ���� ∙ � ∙ �� ∙ �� = � �	��
�

�
� ������

�
	�

�
=

��

3��
 

 

The coordinates of the centroid: 

y�� =
���
� =

��

3��	

4

=
4�
3� 

  

z�� =
��

�

� =
−
��

3��	

4

= −
4�
3� 

In order to calculate the central moments of inertia �� and �� and the centrifugal 
moment of inertia ��� we calculate first the moments of inertia about the reference 

axes, ��
�
,	���and ���

��: 

��
�

= � ��	�� = � �	 ∙ �
�	� ∙ � ∙ �� ∙ �� = � ����
�

�
� �
�	���

�
	�

�
=

���

16��
 

��� = � ��	�� = � �	 ∙ ���	� ∙ � ∙ �� ∙ �� = � ����
�

�
� ���	���

�
	�

�
=

���

16��
 

		��
�
�� = � y�z��� = −� ��
�� ∙ ����� ∙ � ∙ �� ∙ �� = −� �����

� � �
�� ∙
�

	�
���

������ = −
��

�
  

The central moments of inertia �� and �� are calculated by translating: 
�� = ��

�
− z��

	� =
���

16
− �−

4�
3��

	 ��	

4
= �� � �

16
−

4

9�� 
�� = ��� − y��

	� =
���

16
− �4�

3��
	 ��	

4
= �� � �

16
−

4

9�� 
��� = ��

�
�� − y��z�� ∙ � = −

��

8
− �4�

3��
	 ��	

4
= −�� �1

8
+

4

9�� 
 

The principal moments of inertia calculated with formula (2.53) are: 

�� = �� � �

��
+

�

�
�   and  �� = �� � �

��
−

�

�
−

�

��
� 



 

The rotation of the principal axes: ��	2� = −
	���

�����
= ∞ 

The solutions are: 2� =
�

	
 and 2� − � = −

�

	
 

The first solution is the correct one, due to the condition: 

�	�

���
< 0 

The final angle of rotation: 	 =
�

�
 


