SYLLABUS¹

1. Information about the program

1.1 Higher education institution	Politehnica University of Timişoara
1.2 Faculty ² / Department ³	Civil Engineering / Fundamentals of Physics for Engineers
1.3 Chair	-
1.4 Field of study (name/code ⁴)	Civil Engineering/80
1.5 Study cycle	bachelor
1.6 Study program (name/code/qualification)	Civil Engineering in English/10/Engineer

2. Information about the discipline

2.1 Name of discipline/ formative category ⁵		Phy	Physics / DF				
2.2 Coordinator (holder) of course activities		Pretorian Simona					
2.3 Coordinator (holder) of applied activities ⁶		Pret	torian Simona				
2.4 Year of study7	1	2.5 Semester	2	2.6 Type of evaluation	Е	2.7 Type of discipline ⁸	DI

3. Total estimated time - hours / semester: direct teaching activities (fully assisted or partly assisted) and individual training activities (unassisted) 9

3.1 Number of fully assisted hours / week	4 of which:	3.2 course	2	3.3 seminar / laboratory / project	2
3.1 * Total number of fully assisted hours / semester	56 of which:	3.2* course	28	3.3* seminar / laboratory / project	28
3.4 Number of hours partially assisted / week	of which:	3.5 training		3.6 hours for diploma project elaboration	
3.4 * Total number of hours partially assisted / semester	of which:	3.5* training		3.6 * hours for diploma project elaboration	
3.7 Number of hours of unassisted activities / week	2 of which:		,	ours in the library, on the tforms and on the field	0,5
		hours of individu bibliography and	•	after manual, course support,	1
		training seminars portfolios and es		tories, homework and papers,	0,5
3.7 * Number of hours of unassisted 28 of additional documentary hours in the library, on the which: specialized electronic platforms and on the field		•	7		
		hours of individu bibliography and	,	after manual, course support,	14
		training seminars portfolios and es		tories, homework and papers,	7
3.8 Total hours / week ¹⁰	6				
3.8* Total hours /semester	84				
3.9 Number of credits	3				

4. Prerequisites (where applicable)

4.1 Curriculum	 Mathematical analysis, Algebra and geometry (may be taken concurrently)
	concurrentity

¹ The form corresponds to the Discipline File promoted by OMECTS 5703 / 18.12.2011 and to the requirements of the ARACIS Specific Standards valid from 01.10.2017.

 $^{^{2}}$ The name of the faculty which manages the educational curriculum to which the discipline belongs

³ The name of the department entrusted with the discipline, and to which the course coordinator/holder belongs.

⁴ The code provided in HG no.140 / 16.03.2017 or similar HGs updated annually shall be entered.

⁵ Discipline falls under the educational curriculum in one of the following formative disciplines: Basic Discipline (DF), Domain Discipline (DD), Specialist Discipline (DS) or Complementary Discipline (DC). ⁶ Application activities refer to: seminar (S) / laboratory (L) / project (P) / practice/training (Pr).

⁷ Year of studies in which the discipline is provided in the curriculum.

⁸ Discipline may have one of the following regimes: imposed discipline (DI), optional discipline (DO) or optional discipline (Df).

⁹ The number of hours in the headings 3.1 *, 3.2 *, ..., 3.8 * is obtained by multiplying by 14 (weeks) the number of hours in headings 3.1, 3.2, ..., 3.8. The information in sections 3.1, 3.4 and 3.7 is the verification keys used by ARACIS as: $(3.1) + (3.4) \ge 28$ hours / wk. and $(3.8) \le 40$ hours / wk. ¹⁰ The total number of hours in points 3.1, 3.4 and 3.7.

4.2 Competencies	 Algebraic, vectorial, integral and differential calculus, basic high school physics
------------------	---

5. Conditions (where applicable)

5.1 of the course	• large classroom, laptop, projector, internet access, blackboard/whiteboard
5.2 to conduct practical activities	 Seminar room, blackboard/whiteboard / lab with specific experimetal stands and devices, computers with specific softwares, blackboard/whiteboard

6. Specific competencies acquired through this discipline

Specific competencies	Aquire knowledge of the main principles and laws of physics
Professional competencies ascribed to the specific competencies	 Design of structural elements in civil engineering, specific to graduated study programme Complying to quality and sustainable requirements for civil, industrial and agricultural constructions
Transversal competencies ascribed to the specific competencies	 Documentation in Romanian and foreign language, in view of professional and personal development, via continuous learning and efficient adaptation to the new technical specifications

7. Objectives of the discipline (based on the grid of specific competencies acquired - pct.6)

7.1 The general objective of the discipline	Understand and use argued techniques, concepts and fundamental principles of physics to explain, interpret and solve problems-aspects of engineering
	Knowledge of the main principles and laws of physics;
7.2 Specific objectives	 Ability to process and network physical phenomena using fundamental laws of physics in order to understand technical issues, multidisciplinary technological aspects;
	 Ability of applying the most appropriate mathematical techniques –algoritms for modeling physical phenomena at the formal interface between physics and engineering; solve problems involving physics knowledge using analytical and numerical methods;
	 Ability to obtain experimental information, organize them, analyze and interpret, draw conclusions;

8. Content¹¹

8.1 Course	Number of hours	Teaching methods 12
INTRODUCTION Models and methods in physics; Unit systems.	2	lecture, explanations,
NEWTONIAN MECHANICS Newton's laws; Gravitational force, friction force, centripetal force, inertial force; Movement of a mass point in a force field, initial	13	examples, demonstrations, simulations,

¹¹ It details all the didactic activities foreseen in the curriculum (lectures and seminar themes, the list of laboratory works, the content of the stages of project preparation, the theme of each practice stage). The titles of the laboratory work carried out on the stands shall be accompanied by the notation "(*)".

¹² Presentation of the teaching methods will include the use of new technologies (e-mail, personalized web page, electronic resources etc.).

conditions; Energy, work, torque, angular momentum, moment of inertia; Theorems snd consevation laws.		benchmarking, problematization for individual study
OSCILLATIONS AND ELASTIC WAVES Simple Harmonic Motion; Superposition of two simple harmonic oscillations; Damped and Forced Oscillations; Waves equations; Energy; Interference, reflection and refraction, standing waves, attenuation, dispersion, (Doppler effect); Seismic waves; Acoustics and ultra-acoustics elements .	12	
THERMODYNAMICS Laws of themodynamics;Thermodynamic processes for ideal gas.	6	-
ELECTRODYNAMICS ELECTRODYNAMICS Electric charge; Electric field sources, magnetic field sources; Electric current; Electromagnetic waves, characteristic phenomena. Thermal radiation.	9	
		_
		-
		-
Bibliography ¹³ V.Dorobanţu, S.Pretorian, <i>Physics Between Fear and</i>	Respect, Politehnica Publishing	House. Timisoara 2009
Richard P. Feynman, Robert B. Leighton, Matthew Sands, <i>The Feynma</i> http://www.feynmanlectures.caltech.edu/l_toc.html, http://www.feynmanlectures.caltech.edu/III_toc.html		Wesley 1963;
http://www.feynmanlectures.caltech.edu/l_toc.html, http://www.feynmanlectures.caltech.edu/III_toc.html	nlectures.caltech.edu/II_toc.html	Wesley 1963; ,
http://www.feynmanlectures.caltech.edu/l_toc.html , http://www.feynma		Wesley 1963;

 ¹³ At least one title must belong to the discipline team and at least one title should refer to a reference work for discipline, national and international circulation, existing in the UPT library.
 ¹⁴ Types of application activities are those specified in footnote 5. If the discipline contains several types of applicative activities then they are sequentially in the lines of the table below. The type of activity will be in a distinct line as: "Seminar:", "Laboratory:", "Project:" and / or "Practice/training".

discution	2	analysis and interpretation of the results within the team, by graphical and comparative representations, error analysis between teams.
Bibliography ¹⁵ Sears and Zemansky's, <i>University Physics</i> , 12th edition, <i>Fizică</i> (in Romanian),Editura Didactică și Pedagogică, București, 1983 probleme rezolvate și propuse, Politehnica Publishing House, Timișoara	-in UPT' Library); S. Pretorian, Ele	emente de fizică în

9. Corroboration of the content of the discipline with the expectations of the main representatives of the epistemic community, professional associations and employers in the field afferent to the program

•	Knowledge of the main principles, laws and methods of physics develop necessary skills to understand, explain and
	interpret problems in civil engineering and for multidisciplinary technological situations.

10. Evaluation

Type of activity	10.1 Evaluation criteria ¹⁶	10.2 Evaluation methods	10.3 Share of the final grade
10.4 Course	Knowledge of the main principles and laws of physics and ability to process and network physical phenomena using fundamental laws of physics	Written exam, lasting 3 hours. Approximate structure of exam topics: 2 broader theoretical subjects and 4 short questions, aiming to state physical laws, with the appropriate formula, indicating units of measure, verifying dimensional relationships, etc.	2/3
10.5 Applied activities	S: Ability to solve known problems of engineering physics, to address some with finality still open, to argue; Homeworks;	Written tests, homework evaluation, answers and activity at the blackboard during the seminar	½ of 1/3
	L: Ability to properly use measuring devices, to organize experimental data, to analyze and interpret	Grade on each laboratory work + Experimentarium essay	½ of 1/3
	P ¹⁷ :		
	Pr:		
10.6 Minimum performance standard (minimum amount of knowledge necessary to pass the discipline and the way in which this knowledge is verified ¹⁸)			
 Knowledge of the main principles and laws of physics; 			

Seminar: Ability to solve known problems of engineering physics taught in class;

Laboratory: Ability to properly use measuring devices, to organize experimental data and to calculate errors. ٠

Date of completion

Course coordinator (signature)

Coordinator of applied activities (signature)

¹⁵ At least one title must belong to the discipline team.
¹⁶ Syllabus must contain the procedure for assessing the discipline, specifying the criteria, methods and forms of assessment, as well as specifying the weightings assigned to them in the final grade. The evaluation criteria shall be formulated separately for each activity foreseen in the curriculum (course, seminar, laboratory, ¹⁷ In the case where the project is not a distinct discipline, this section also specifies how the outcome of the project evaluation makes the admission of the student

conditional on the final assessment within the discipline.

¹⁸ It will not explain how the promotion mark is awarded.

25.01.2018

Head of Department (signature)

.....

Date of approval in the Faculty Council ¹⁹ 12.02.2018

.....

Dean (signature)

.....

¹⁹ The endorsement is preceded by the discussion of the board's view of the study program on the discipline record.