Universitatea Politehnica Timișoara, Facultatea de Construcții Departamentul de Construcții Metalice și Mecanica Construcțiilor str. Ioan Curea nr.1, 300224 Timișoara, Romania tel: ++40.256.403911, fax: ++40.256.403917

Studiul avansat al cadrelor contravântuite excentric cu capacitate de re-centrare: tipologii noi de linkuri si influența plăcii din beton armat (ARNIS)

Cod proiect: N-III-P1-1.1-PD-2016-1655 Contractul de finanțare nr. PD 139/2018

Livrabil D4_b Indicatori ai evaluării performanței sistemului + completare D4_a: Modele numerice calibrate ale linkurilor

Adriana Chesoan, Aurel Stratan, Francesco Plaitano și Enzamarina Aiello 2020

1 Modele numerice calibrate ale linkurilor

Pe lângă calibrarea linkului din cadrul seriei de încercări experimentale din 2003, din cadrul Facultății de Construcții din Timișoara (livrabil D4_a), s-au calibrat și linkurile din oțel încercate în programul experimental al prezentului proiect (din primele 4 încercări experimentale prezentate in Livrabilul D3 – a și b).

1.1 Modele MEF monotone

In modelarea cu elemente finite (calibrarea numerica) s-au folosit rezultatele experimentale pentru toate materialele componente ale linkurilor si pentru comportarea globala a acestora. Standul experimental (mai putin linkul) a fost modelat cu elemente liniare (Wire). Acest lucru a fost fezabil, deoarece aceste elemente au fost proiectate sa ramana elastice.

1.1.1 Linkul LF1-M

Caracteristici:

- Nume: LF1-M
- e = 500 mm
- Otel: \$355
- Suruburi: M30 10.9

Fig. 1. Modelul ABAQUS pentru linkul LF1-M

Modelare Part-uri link in ABAQUS :

1. Link - 3D Solid extrude - 440 mm lungime

Fig. 2. Geometria linkului

Fig. 3. Proprietatile linkului

2. Rigidizare inima - 3D Solid extrude – 6 mm grosime

Fig. 4. Geometrie rigidizare

Fig. 5. Proprietati rigidizare

3. Placa de capat link - 3D Solid extrude - 29.9 mm grosime

Fig. 6. Geometrie placa de capat link

Fig. 7. Proprietati placa de capat link

4. Placa de capat grinda - 3D Solid extrude – 29.9 mm grosime

Fig. 8. Geometrie placa de capat grinda

Fig. 9. Proprietati placa de capat grinda

5. Piulita - 3D Solid Extrude – 23.71 mm grosime

Fig. 10. Geometria piulitei

6. Saiba - 3D Solid Extrude – 4.57 mm grosime

Fig. 11. Geometria saibei

7. Surubul - 3D Solid Revolve: 360°

Fig. 12. Geometria surubului

Fig. 13. Proprietatile surubului

Pentru suruburi, dupa specificatiile din EC8, se atribuie o forta de pretensionare, de 392700 N pentru suruburile M.30 10.9.

Tip analiza: Dinamic Implicit Aplicare: Cvasi-Static Geometrie neliniara (efecte ordin doi): DA Timp: 0.01 sec pentru Pasul de Pretensionare si 1 pentru Pasul de Analiza

\$	💠 Step Manager									
	Name		Procee	Procedure			Time			
~	Initial		(Initial)	(Initial)			N/A			
4	Preload		Dynam	nic, Implicit	ON	0.1				
4	Work	Work Dynamic, Implicit				ON	1			
Cr	reate	Edit	Replace	Rename	Delete	Nlgeom	Dismiss			

Fig. 14. Pasii de analiza

Toate Part-urile au fost discretizate cu urmatoarele caracteristici:

- Forma Elementelor: Hex Structurate pentru link; Hex pentru suruburi
- Acuratete de ordin doi: Da
- Marime globala aproximativa: 7 mm pentru Link, Rigidizare pe inima, Surub, Piulita si Saiba; 8 mm pentru placile de capat; 200 mm pentru IPE360; 400 mm pentru restul standului.

븆 Element Type	×	💠 Global Seeds 🛛 🕹	
Element Library	Family	Sizing Controls	, k
Standard Explicit	3D Stress	Approximate global size:	
Geometric Order	Acoustic Cohesive Continuum Shell	Curvature control Maximum deviation factor (0.0 < h/L < 1.0): 0.1 (Approximate number of elements per circle: 8)	z
Hex Wedge Tet		Minimum size control	
Hybrid formulation Element Controls	Reduced integration 🗌 Incompatible modes	By absolute value (0.0 < min < global size)	
Hourglass stiffness: Viscosity: Kinematic split: Second-order accuracy Distortion control:	Use default _ Specify Use default _ Specify @ Average stain _ Orthogonal _ Centroid @ Yes _ No @ Use default _ Ves _ No Length ratic _ 0.1	OK Apply Defaults Cancel	
C3D8R: An 8-node linea	r brick, reduced integration, hourglass control.	Mesh Controls X Bernett Shape @ Hex. O Hex-dominated O Tet O Wedge Technique	and the second se
Note: To select an element select "Mesh->Contr OK	shape for meshing ols' from the main menu bar. Defaults Cancel	As is Free Starter Sources Sectors of Multiple Multiple Assign Stark Directon.	
z x		OK Defaults Cancel	

Fig. 15. Caracteristici link LF1-M

Rezultate

Rezultatul simularii MEF se poate vedea in Fig. 16: modelul prezinta deformatii ale placilor de capat si in zona imbinarii dintre talpi si placile de capat. De asemenea, se observa voalarea inimii linkului. Eforturile maxime apar in aceleasi doua randuri de suruburi ca si in incercarea experimentala.

Fig. 16. Deformatiile plastice ale linkului LF1-M

In Fig. 17 este ilustrata comparatia dintre rezultatele experimentale si curba de comportare din ABAQUS.

Fig. 17. Comparatia dintre rezultatele experimentale si simularea numerica pentru LF1-M

1.1.2 Linkul LE1-M

Caracteristici:

- Nume: LE1-M
- e = 1000 mm
- Otel: \$355
- Suruburi: M30 10.9

Fig. 18. Modelul ABAQUS pentru linkul LE1-M

Modelare Part-uri link in ABAQUS :

1. Link - 3D Solid extrude – 940 mm lungime

Fig. 19. Geometria linkului

Fig. 20. Proprietatile linkului

2. Rigidizare inima - 3D Solid extrude – 6 mm grosime

Fig. 21. Geometrie rigidizare

Fig. 22. Proprietati rigidizare

3. Placl de capat - 3D Solid extrude – 29.9 mm grosime

Fig. 23. Geometrie placa de capat

Fig. 24. Proprietati placa de capat

4. Piulita - 3D Solid Extrude – 23.71 mm grosime

Fig. 25. Geometria piulitei

5. Saiba - 3D Solid Extrude – 4.57 mm grosime

Fig. 26. Geometria saibei

6. Surubul - 3D Solid Revolve: 360°

Fig. 27. Geometria surubului

Fig. 28. Proprietatile surubului

Tip analiza: Dinamic Implicit Aplicare: Cvasi-Static Geometrie neliniara (efecte ordin doi): DA Timp: 0.01 sec pentru Pasul de Pretensionare si 0.53 pentru Pasul de Analiza

Toate Part-urile au fost discretizate cu urmatoarele caracteristici:

- Forma Elementelor: Hex Structurate pentru link; Hex pentru suruburi
- Acuratete de ordin doi: Da

• Marime globala aproximativa: 7 mm pentru Link, Rigidizare pe inima, Surub, Piulita si Saiba; 8 mm pentru placile de capat; 200 mm pentru IPE360; 400 mm pentru restul standului.

Fig. 29. Caracteristici link LE1-M

Rezultate

In Fig. 30 se observa rezultatele pentru simularea MEF a linkului LE1-M: eforturile maxime apar la imbinarea dintre talpi si placile de capat, la fel ca si in incercarea experimentala, in celelalte zone nu apar deformatii mari.

Fig. 30. Deformatiile plastice ale linkului LE1-M

In Fig. 31 este ilustrata comparatia dintre rezultatele experimentale si curba de comportare din ABAQUS.

Fig. 31. Comparatia dintre rezultatele experimentale si simularea numerica pentru LE1-M

1.2 Modele MEF ciclice

Pentru cosntruirea acestor modele MEF s-a folosit o alta abordare pentru a reproduce incercarile ciclice: s-a adoptat folosirea elementelor tip placa (Shell) in locul celor Solide, pentru a obtine niste modele mai putin incarcate.

Intregul stand experimental modelat cu elemente de tip bara (Wire) a fost inlocuit cu 2 resorturi pozitionate la capetele linkului si grosimea placilor de capat a fost inglobata in lungimea linkului. Nu exista incercari ciclice pe materialele componente ale linkurilor, astfel ca s-a decis adoptarea acelorasi caracteristici din incercarile (monotone) la tractiune ale materialelor, dar diferentele au fost partia imbunatatite folosinf modelul Kauffman pentru materiale.

1.2.1 Linkul LF2-C

Modelare Part-uri link in ABAQUS :

- 1. Link 3D Shell extrude 500 mm lungime

Fig. 32. Geometria linkului

Fig. 33. Proprietatile linkului

2. Rigidizare inima - 3D Shell planar - 6 mm grosime

Fig. 34. Geometrie rigidizare

Fig. 35. Proprietati rigidizare

🖶 Edit Material			💠 Edit	🚔 Edit Material			븆 Edit Material			
Name: WEB			Name:	Name: FLANGE			Name: STIFFNERS			
Jescription:			Descript	Description:			Description:			
Material Behaviors			Materi	al Behaviors		Mater	Material Behaviors			
Elastic			Elastic			Elactic	Flatic			
Plastic	¢		Plastic			Plastic				
Gene	eral <u>M</u> echanical	<u>Thermal</u> <u>Electrical/Ma</u>	gnetic <u>G</u> ener	al <u>M</u> echanical	<u>T</u> hermal <u>E</u> lectrical/Mag	netic <u>G</u> ene	ral <u>M</u> echanical	<u>Thermal</u> <u>Electrical</u>	/Magnetic	
Plastie	c		Plastic			Plastic				
Harde	ening: Combined		Harde	Hautonian Instantia						
Thurac	combined		Haide	ing. isotropic	¥	Harde	Hardening: Isotropic			
Data t	type: Half Cycle	\sim		Use strain-rate-dependent data			Use strain-rate-dependent data			
Numb	ber of backstresses	3 🖨	Use							
	e temperature-der	endent data	Numb	er of field variable	es: 0 🔺	Numb	er of field variable	es: 0 🚔		
			Data			Data				
Num	ber of field variable	s: 0 -		Vield	Plastic			Direction		
Data	a			Stress	Strain		Stress	Strain		
	terms that at	Plastic	1	396.9876483	0					
	Yield					1	293.7196703	0		
	Vield Stress	Strain	2	402.1836	0.013003533	1	293.7196703 297.70965	0 0.013492873		
1	Yield Stress 293.7196703	0	2	402.1836 471.2387713	0.013003533 0.033017257	1 2 3	293.7196703 297.70965 361.9992697	0 0.013492873 0.039556989		
1 2	Yield Stress 293.7196703 297.70965	0 0.013492873	2 3 4	402.1836 471.2387713 518.305352	0.013003533 0.033017257 0.052638279	1 2 3 4	293.7196703 297.70965 361.9992697 406.4594937	0 0.013492873 0.039556989 0.064958988		
1 2 3	Yield Stress 293.7196703 297.70965 361.9992697	Strain 0 0.013492873 0.039556989	2 3 4 5	402.1836 471.2387713 518.305352 549.5272321	0.013003533 0.033017257 0.052638279 0.071881712	1 2 3 4 5	293.7196703 297.70965 361.9992697 406.4594937 436.4673291	0 0.013492873 0.039556989 0.064958988 0.089731678		
1 2 3 4	Yield Stress 293.7196703 297.70965 361.9992697 406.4594937	Strain 0 0.013492873 0.039556989 0.064958988	2 3 4 5 6	402.1836 471.2387713 518.305352 549.5272321 570.2232264	0.013003533 0.033017257 0.052638279 0.071881712 0.090761817	1 2 3 4 5 6	293.7196703 297.70965 361.9992697 406.4594937 436.4673291 456.7732878	0 0.013492873 0.039556989 0.064958988 0.089731678 0.113905489		
1 2 3 4 5	Yield Stress 293.7196703 297.70965 361.9992697 406.4594937 436.4673291	Strain 0 0.013492873 0.039556989 0.064958988 0.089731678	2 3 4 5 6 7	402.1836 471.2387713 518.305352 549.5272321 570.2232264 584.7559741	0.013003533 0.033017257 0.052638279 0.071881712 0.090761817 0.109292058	1 2 3 4 5 6 7	293.7196703 297.70965 361.9992697 406.4594937 436.4673291 456.7732878 471.3437303	0 0.013492873 0.039556989 0.064958988 0.089731678 0.113905489 0.137508692		
1 2 3 4 5 6	Yield Stress 293.7196703 297.70965 361.9992697 406.4594937 436.4673291 456.7732878	Strain 0 0.013492873 0.039556989 0.064958988 0.089731678 0.113905489 0.313905429	2 3 4 5 6 7 8	402.1836 471.2387713 518.305352 549.5272321 570.2232264 584.7559741 596.4008393	0.013003533 0.033017257 0.052638279 0.071881712 0.090761817 0.109292058 0.127485168	1 2 3 4 5 6 7 8	293.7196703 297.70965 361.9992697 406.4594937 436.4673291 456.7732878 471.3437303 483.2032106	0 0.013492873 0.039556989 0.064958988 0.089731678 0.113905489 0.137508692 0.160567607		
1 2 3 4 5 6 7	Yield Stress 293.7196703 297.70965 361.9992697 406.4594937 436.4673291 456.7732878 471.3437303	Strain 0 0.013492873 0.039556989 0.064958988 0.089731678 0.113905489 0.137508692	2 3 4 5 6 7 8 9	402.1836 471.2387713 518.305352 549.5272321 570.2232264 584.7559741 596.4008393 607.2148104	0.013003533 0.033017257 0.052638279 0.071881712 0.090761817 0.109292058 0.127485168 0.12485168	1 2 3 4 5 6 7 8 9	293.7196703 297.70965 361.9992697 406.4594937 436.4673291 456.7732878 471.3437303 483.2032106 494.27682	0 0.013492873 0.039556989 0.064958988 0.089731678 0.113905489 0.137508692 0.160567607 0.18310677		
1 2 3 4 5 6 7 8	Yield Stress 293.7196703 297.70965 361.9992697 406.4594937 436.4673291 456.7732878 471.3437303 483.2032106	Strain 0 0.013492873 0.039556989 0.064958988 0.089731678 0.113905489 0.137508692 0.160567607 0.160567607	2 3 4 5 6 7 8 9 10	402.1836 471.2387713 518.305352 549.5272321 570.2232264 584.7559741 596.4008393 607.2148104 685.0039524	0.013003533 0.033017257 0.052638279 0.071881712 0.090761817 0.109292058 0.127485168 0.127485168 0.145353193 0.273884921	1 2 3 4 5 6 7 8 9 10	293.7196703 297.70965 361.9992697 406.4594937 436.4673291 456.7732878 471.3437303 483.2032106 494.27682 580.4407019	0 0.013492873 0.039556889 0.064958988 0.089731678 0.113905489 0.137508692 0.160567607 0.18310677 0.3584426		
1 2 3 4 5 6 7 8 9	Yield Stress 293.7196703 297.70965 361.9992697 406.4594937 436.4673291 456.7732878 471.3437303 483.2032106 494.27682	Strain 0 0 0.013428273 0.039556989 0.064958988 0.089731678 0.113905489 0.137508692 0.160567607 0.18310677	2 3 4 5 6 7 8 9 10	402.1836 471.2387713 518.305352 549.5272321 570.2232264 584.7559741 596.4008393 607.2148104 685.0039524	0.013003533 0.033017257 0.052638279 0.071881712 0.090761817 0.109292058 0.127485168 0.145353193 0.273884921	1 2 3 4 5 6 7 7 8 9 10	293.7196703 297.70965 361.9992697 406.4594937 436.4673291 456.7732878 471.3437303 483.2032106 494.27682 580.4407019	0 0.013492873 0.039556889 0.064958988 0.089731678 0.113905489 0.137508692 0.160567607 0.18310677 0.35848426		

Fig. 36. Proprietatile plastice ale linkului si rigidizarilor

Fig. 37. Resorturile de la capetele linkului

Tip analiza: Static General Geometrie neliniara (efecte ordin doi): DA Timp: 42 sec

Toate Part-urile au fost discretizate cu urmatoarele caracteristici:

• Forma Elementelor: Hex - Structurate pentru link; Hex – Free pentru rigidizari

- Acuratete de ordin doi: Da
- Marime globala aproximativa: 20 mm

Fig. 38. Discretizare link LF2-C

Rezultate

Pentru acest model, la fel ca si in incercarea experimentala, mecanismul de cedare se datoreaza voalarii inimii, dupa cum se poate observa in Fig. 39. Deformatiile din MEF sunt similare cu cele experimentale: apar deformatii la capetele linkului, dar zona cea mai afectata este inima.

Fig. 39. Deformatiile plastice ale linkului LF2-C

In Fig. 40 se poate observa comparatia dintre curbele VL – γT ale incercarii experimentale si modelarii MEF. Nu s-a putut obtine o potrivire perfecta a celor doua curbe deoarece compoartarea monotona a otelului S355 a fost adaptata in modelul ciclic adoptand modelul Kauffman.

Cu toate acestea, se suprapun perfect in fiecare ciclu, principalele diferente aparand doar in ultimele cicluri si doar pentru VL.

Fig. 40. Comparatia dintre rezultatele experimentale si simularea numerica pentru LF2-C

1.2.2 Linkul LE2-C

Modelare Part-uri link in ABAQUS :

3. Link - 3D Shell extrude - 1000 mm lungime

Fig. 41. Geometria linkului

Fig. 42. Proprietatile linkului

4. Rigidizare inima - 3D Shell planar - 6 mm grosime

Fig. 43. Geometrie rigidizare

Fig. 44. Proprietati rigidizare

🜩 Edit Material			🜩 Edit	💠 Edit Material			🜩 Edit Material		
ame:	WEB		Name:	Name: FLANGE			Name: STIFFNERS		
Description:			Descript	Description:			Description:		
Material Behaviors			Materi	al Behaviors		Mater	Material Behaviors		
Elastic			Elastic	Elastic			Elastic		
Plastic			Plastic			Plastic	5		
Gene	ral <u>M</u> echanical	<u>Thermal</u> <u>Electrical/Mag</u>	netic <u>G</u> ener	ral <u>M</u> echanical	<u>Thermal</u> <u>E</u> lectrical/Magn	etic <u>G</u> ene	ral <u>M</u> echanical	<u>T</u> hermal <u>E</u> lect	rical/Magneti
Plastic Hardening: Combined Data type: Half Cycle Number of backstresses: 3 Use temperature-dependent data			Harder	Plastic Hardening: Isotropic Use strain-rate-dependent data Use temperature-dependent data Number of field variables: 0 (*)			Plastic Hardening: Isotropic		
Numb	e temperature-depe	3 💌	Use Numb	e temperature-dep er of field variable	endent data s: 0 v	Numb	e temperature-dep per of field variable		
Numb	per of backstresses: e temperature-depe per of field variables	3 💌 endent data	Use Numb Data	e temperature-dep er of field variable Yield	Plastic	Numb	e temperature-dep per of field variable a Yield	es: 0 Plastic	
Data t Numb	per of backstresses: e temperature-depe per of field variables	3 endent data	Use Numb Data	e temperature-dep eer of field variable Yield Stress	endent data s: 0 × Plastic Strain	Numb	e temperature-dep per of field variable a Yield Stress	Plastic Strain	
Vumb Usi Numb Data	e temperature-depe er of field variables Yield Stress	3 ♥ endent data s: 0 ♥ Plastic Strain	Use Numb	e temperature-dep eer of field variable Yield Stress 396.9876483	Plastic Strain 0	Numb	e temperature-dep per of field variable a Yield Stress 293.7196703	Plastic Strain 0	
Vumb Usi Vumb Data	e temperature-depe er of field variables vield Stress 313.1147541	3 🔊 endent data s: 0 🐨 Plastic Strain 0	Use Numb Data	e temperature-dep er of field variable Vield Stress 396.9876483 402.1836	Plastic Strain 0 0.013003533	Data	e temperature-dep per of field variable a Yield Stress 293.7196703 297.70965	Plastic Strain 0 0.013492873 0	
Jata t Jumb JUse Numb Data 1 2	vield Stress 313.1147541 356.4830664	3 (a) endent data sc 0 (b) Plastic Strain 0 0.01	Use Numb Data	e temperature-dep er of field variable Yield Stress 396.9876483 402.1836 471.2387713	Plastic Strain 0.013003533 0.023017257	Data	e temperature-dep per of field variable a Yield Stress 293.7196703 297.70965 361.9992697	Plastic Strain 0 0.013492873 0.039556989	
lumb Jumb Jumb Data 1 2 3	Yield Stress 313.1147541 356.4850664 384.9955157	3 and a table of the second s	Use Numb Data	temperature-dep er of field variable Yield Stress 396.9876483 402.1836 471.2387713 518.305352	Plastic Strain 0.0.013003533 0.033017257 0.052638279	1 2 3 4	Vield Stress 293.7196703 297.70965 361.9992697 406.4594937	Plastic Strain 0 0.013492873 0.039556989 0.064958989	
lumb Uso Uso Data 1 2 3 4	Vield Stress 313.1147541 356.4850664 384.9955157 402.7187041	3 () endent data () Plastic Strain 0 0.01 0.02 0.03	Use Numb Data 1 2 3 4 5	e temperature-dep er of field variable Yield Stress 396.9876483 402.1836 471.2387713 518.305352 549.5272321	Plastic Strain 0 0.013003533 0.033017257 0.052638279 0.071881712 0.07267	1 2 3 4 5	e temperature-dep per of field variable a Yield 293,7196703 297,70965 361,9992697 406,4594937 436,4673291	Plastic Strain 0 0.013492873 0.039556989 0.064958988 0.089731678	
Jata t Numb Uso Data 1 2 3 4 5	Yield Stress 313.1147541 36.4850664 384.9955157 402.7187041 415.7861325	3 (a) endent data s: 0 (b) Plastic Strain 0 0.01 0.02 0.03 0.04	Use Numb Data 1 2 3 4 5 6	e temperature-dep er of field variable Stress 396.9876483 402.1836 471.2387713 518.305352 549.5272321 570.2232264	Plastic Strain 0 0.013003533 0.03017257 0.052638279 0.071881712 0.090761817	1 2 3 4 5 6	e temperature-dej per of field variable stress 293.7196703 297.70965 361.9992697 406.45924937 436.4673291 436.47732878	Plastic Strain 0 0.013492873 0.039556989 0.064958988 0.089731678 0.13905489	
)ata t Numb Usi Numb Data 1 2 3 4 5 6	r of backstresses: e temperature-depre of field variables 313.1147541 356.4850664 384.9955157 402.7187041 415.7861325 426.2133139	3 () endent data s: 0 () Plastic Strain 0 0.01 0.02 0.03 0.04 0.05	Use Numb 1 2 3 4 5 6 7	temperature-dep er of field variable Yield Stress 396.9876483 402.1836 471.2387713 518.305352 549.5272321 570.2232264 584.7559741 566.409202	Plastic Strain 0 0.013003533 0.033017257 0.052638279 0.071881712 0.090761817 0.1320922058 0.13209129	1 2 3 4 5 6 7 8	e temperature-dep per of field variable stress 293.7196703 297.70965 361.9992697 406.4594937 436.4673291 456.7732878 471.3437303	Plastic Strain 0 0.013492873 0.039556989 0.064959898 0.089731678 0.113905489 0.1137508692 0.16757607	
Data t Usi Usi Data Data 1 2 3 4 5 6 7	er of backstresses: e temperature-depuer er of field variables Yield Stress 313.1147541 356.4850664 384.9955157 402.7187041 415.7861325 426.2133139 434.9267607	3 (a) endent data sc 0 (b) Plastic Strain 0 0.01 0.02 0.03 0.04 0.05 0.06	Use Numb Data 1 2 3 4 5 6 7 8 8	temperature-dep er of field variable Yield Stress 396.997643 402.1836 471.2387713 518.305352 549.5272321 570.2232264 584.7559741 596.4008393 567.2149144	Plastic Stain 0 0 0.013003533 0.033017257 0.052638279 0.071881712 0.0907618177 0.109292058 0.127485168 0.14545182	1 2 3 4 5 6 7 8	e temperature-dej ber of field variable stress 293.7196703 297.70965 361.9992697 406.4594937 436.4673291 436.4673291 436.47732878 471.3437303 483.2032106	Plastic Strain 0 0.013492873 0.069556989 0.069556989 0.137508692 0.137508692 0.137508692 0.1320677	
Data t Usu Usu Data 1 2 3 4 5 6 7 8	e temperature-deper et emperature-deper er of field variables Yield Stress 313.1147541 356.4850664 354.995157 402.7187041 415.7861325 402.213139 424.9267607 424.32706	3 and a constraint of the second se	Use Numb Data 1 2 3 4 5 6 7 8 9	e temperature-dep er of field variable Stress 396.9876483 402.1836 471.2387713 518.305352 549.5272321 570.2232264 584.7559741 596.4008393 607.2148104 685.0036534	Plastic Strain 0 0.013003533 0.033017257 0.052638279 0.071881712 0.090761817 0.109292058 0.127485168 0.143535193 0.27284091	Us Numb Data 1 2 3 4 5 6 7 8 9	e temperature-dej per of field variable 3 293,7196703 297,70965 361,9992697 406,4594937 436,4673291 456,7732878 471,343703 483,2032106 494,27682 590,4407019	Plastic Strain 0 0.013492873 0.039556989 0.064958988 0.064958988 0.1137056892 0.113905489 0.113905489 0.113106707 0.18310677	
)ata t Jumb Usi Data 1 2 3 4 5 6 7 8 9	Yield Stress 313.1147541 356.4850664 384.9955157 402.7187041 415.7861325 426.2133139 434.9267607 442.432706 449.039277	3 and the set of the	Use Numb Data 1 2 3 4 5 6 7 7 8 9 10	temperature-dep er of field variable Stress 396.9876483 402.1836 471.2387713 518.305352 549.5272321 570.2232264 584.7559741 596.4003393 607.2148104 685.0039524	Plastic Strain 0 0.013003533 0.033017257 0.052638279 0.071881712 0.090761817 0.109292058 0.127485168 0.12545168 0.145353193 0.273884921	Us Numb 1 2 3 4 5 6 7 8 9 10	e temperature-dej per of field variable 3 Vield \$1293.7196703 297.70965 361.9992697 406.4594937 436.4673291 456.7732878 471.3437303 483.2032106 494.27682 580.4407019	Plastic Strain 0 0.013492873 0.039556989 0.064958988 0.089731678 0.1139054892 0.137508492 0.160567607 0.18310677 0.35846426	
)ata t Vumb Usi Data Data 1 2 3 4 5 6 7 8 9 10	re of backstresses: e temperature-dept er of field variables 3 313.1147541 356.4850664 384.9955157 402.7187041 415.7761325 426.213139 434.9267607 442.432706 449.039277 454.9485235	3 ■ and an	Use Numb Data 1 2 3 4 5 6 7 8 9 10	temperature-dep er of field variable Stress 396.9876483 402.1836 471.2387713 518.305352 549.5272321 570.2232264 584.7559741 596.4008393 607.2148104 685.0039524	Plastic Strain 0 0.013003533 0.03017257 0.052638279 0.071881712 0.090761817 0.109292058 0.127485168 0.145353193 0.273884921	1 Us Numb 1 2 3 4 5 6 7 8 9 10	e temperature-dej per of field variable 3 Yield Stress 293.7196703 297.70965 361.9992697 406.4594937 436.4673291 436.4673291 436.47732878 471.3437303 471.3437303 433.2032106 494.27682 580.4407019	Plastic Strain 0 0.013492873 0.039556989 0.064958988 0.089731678 0.113905489 0.113905489 0.137508692 0.160567607 0.18310677 0.35848426	
Data t Numb Uso Numb Data 1 2 3 4 5 6 7 8 9 10 11	er of backstresses: e temperature-depre- er of field variables 313.1147541 356.4850664 384.9955157 402.7187041 415.7861325 426.2133139 434.9267607 442.432706 449.039277 445.4945235 460.3003884	3 0 endent data s: 0 0 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Use Numb Data 1 2 3 4 5 6 7 8 9 9 10	temperature-dep er of field variable Yield Stress 396.9876483 402.1836 471.2387713 518.305352 549.5272321 570.2232264 584.7559741 596.4008393 607.2148104 685.0039524	Plastic Strain 0 0.013003533 0.033017257 0.052638279 0.071881712 0.0907618177 0.109292058 0.127485168 0.145353193 0.273884921	1 Us Numb 1 2 3 4 5 6 7 8 9 10	e temperature-dep per of field variable stress 293.7196703 297.70965 361.9992697 406.4594937 436.4673291 456.7732878 471.3437303 483.2032106 494.27682 580.4407019	Plastic Strain 0 0.013492873 0.039556989 0.064958988 0.089731678 0.113905489 0.137508692 0.13508692 0.1350848425	
Data t Usi Usi Data Data Data 1 2 3 4 5 6 7 8 9 10 11 12	et emperature-depu er of backstresses: et emperature-depu stress 313.1147541 356.4850664 384.9955157 402.7187041 415.7801325 426.2133139 424.9257607 442.432706 449.039277 454.9485235 460.3003884 465.1959547	3 and the set of the	Use Numb Data 1 2 3 4 5 6 7 8 9 9 10	temperature-dep er of field variable Yield Stress 396.9976483 402.1836 471.2387713 518.305352 549.5272321 570.2232264 584.7559741 596.4008393 607.2148104 685.0039524	Plastic Stain 0 0.033017257 0.05638279 0.071881712 0.0907618177 0.10292058 0.127485168 0.145353193 0.273884921	1 Us Numb 1 2 3 4 5 6 7 8 9 10	e temperature-dej per of field variable 3 293,7196703 297,70965 361.9992697 406.4594937 436.4673291 456.7732878 471.3437303 483.2032106 494.27682 580.4407019	Plastic Strain 0 0.013422873 0.039556989 0.064958988 0.064958988 0.013905689 0.113905489 0.113905489 0.1137508692 0.160567607 0.18310677 0.35848426	

Fig. 45. Proprietatile plastice ale linkului si rigidizarilor

Fig. 46. Resorturile de la capetele linkului

Tip analiza: Static General Geometrie neliniara (efecte ordin doi): DA Timp: 42 sec

Toate Part-urile au fost discretizate cu urmatoarele caracteristici:

- Forma Elementelor: Hex Structurate pentru link; Hex Free pentru rigidizari
- Acuratete de ordin doi: Da
- Marime globala aproximativa: 20 mm

Fig. 47. Discretizare link LE2-C

Rezultate

La fel ca si in incercarea experimentala, deformatiile cele mai mari apar la capetele linkului.

Fig. 48. Deformatiile plastice ale linkului LE2-C

Fig. 49. Comparatia dintre rezultatele experimentale si simularea numerica pentru LE2-C

2 Indicatori ai evaluarii performantei sistemului

Pentru evaluarea factorului de comportare q s-au rulat analize incremental dinamice (folosind sapte accelerograme semiartificiale, scalate sa potriveasca pe spectrul EC8 de tip 1, sol C), cu un increment al amplificatorului λ al acceleratiei de 0.2. In zonele de interes (rotirea la curgere a linkurilor si rotirea

linkurilor la SLU), incrementul amplificatorului actiunii seismice λ a fost mai mic – 0.01. In analizele dinamice s-a folosit o amortizare Rayleigh de 2%.

Record	Earthquake	Date	Station Name	Station	Magnitude	Fault
code	Name			Country	Mw	mechanism
00385_H1	Alkion	24.02.1981	Xylokastro- O.T.E.	Greece	6.6	Normal
14336_H1	Montenegro (Aftershock)	24.05.1979	Bar-Skupstina Opstine	Montenegro	6.2	Reverse
15613_H2	Izmit (Aftershock)	13.09.1999	Yarimca (Eri)	Turkey	5.8	Strike-Slip
15683_H2	Izmit (Aftershock)	13.09.1999	Usgs Golden Station Kor	Turkey	5.8	Strike-Slip
16035_H2	Faial	09.07.1998	Horta	Portugal	6.1	Strike-Slip
16889_H1	L'Aquila Mainshock	06.04.2009	L'Aquila - V. Aterno - Aquil Park In	Italy	6.3	Normal
17167_H1	Aigion	15.06.1995	Aigio-OTE	Greece	6.5	Normal

S-au realizat calcule pentru un nivel al actiunii seismice corespunzator criteriului de acceptare al Starii Limita Ultime (SLU) de 0.11 radiani rotire plastica in linkuri, recomandat de FEMA356. S-au calculat un factor de comportare de proiectare (q_d) si unul efectiv (q) folosind formulele:

$$q_d = \frac{\lambda_u}{\lambda_d}$$

unde λ_u este amplificatorul actiunii seismice corespunzator rotirii ultime din linkuri (0.11 rad) si λ_d este amplificatorul actiunii seismice corespunzator nivelului actiunii seismice folosite in proiectare.

$$q = \frac{\lambda_u}{\lambda_1}$$

unde λ_1 este amplificatorul actiunii seismice corespunzator rotirii de curgere din linkuri. In proiectare, in analiza spectrala, s-a folosit spectrul de raspuns elastic din EC8 de tip 1, sol tip C (5% amortizare), redus cu un factor de comportare q=4. Astfel, amplificatorul nivelului actiunii seismice se considera $\lambda_{d,sp}$ =0.25 (1/4). Pentru a tine cont de tipul analizei dinamice si a unei amortizari diferite (de 2%), amplificatorul λ_d se ajusteaza folosind formula:

$$\lambda_d = \lambda_{d,SP} \frac{V_{d,SP}}{V_{d,TH}}$$

unde $V_{d,SP}$ este forta taietoare de baza de proiectare din analiza spectrala (5% amortizare) si $V_{d,TH}$ este the forta taietoare de baza dintr-o analiza dinamica liniara (2% amortizare) cu un amplificator de 0.25.

Raportul celor doi factori de comportare reprezinta supra-rezistenta de proiectare Ω_d , calculata folosind formula:

$$\Omega_d = \frac{q_d}{q}$$

Supra-rezistenta totala Ω_t se calculeaza ca produsul dintre supra-rezistenta structurii Ω_s si supra-rezistenta de proiectare Ω_d , folosind formulele:

$$\Omega_T = \Omega_s \Omega_d = \frac{V_u}{V_d}$$

unde V_u este forta taietoare de baza corespunzatoare rotirii la SLU in linkuri de 0.11 rad si V_d este forta taietoare de baza de proiectare (din analiza spectrala cu spectrul din EC8).

$$\Omega_S = \frac{V_u}{V_1}$$

unde V_1 este forta taietoare de baza corespunzatoare rotirii la curgere in linkuri.

$$\Omega_d = \frac{V_1}{V_d}$$