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Abstract: Floods have accompanied mankind 
throughout its entire history. Although the causes for 
this have varied, e.g. extreme changes in the river 
catchments and material deposition along the riverbed, 
the impact is the same. Floods are dangerous to people’s 
lives and vital interests. Floods are now the main 
hydrological topics worldwide. The sensitivity of 
environment and national economy to the impact of 
floods is becoming ever more pronounced. In certain 
developing countries such as Indonesia, the land use in 
the catchment area changes continuously and it is very 
difficult to be restrained. No wonder that flood damage 
in the past that was caused by discharges having a 
return period of 100 years, can today be the results of a 
20-year maximum discharge.
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1.1 NEED FOR MODELING RIVER
Therefore the prediction of stage, discharge, time of 
occurrence and duration of the flood, especially of 
peak discharge at a specified point on a stream is 
absolutely necessary. These activity is known as flood 
forecasting, whereas flood warning is defined as the 
provision of advance notice that a flood may occur in 
the near future at a certain station or in a certain river 
basin (WMO,1974).
When a region is affected, the system of flood control 
service is activated and operates according to 
previously drafted flood plans. An effective flood 
warning system needs to be based on accurate timely 
flow forecasts.

There are two main reasons to undertake numerical 
modelling of floodplain flow: first as an alternative to 
laboratory experiments or field data to improve 
understanding of the processes involved in floodplain 
flow; and • second to obtain predictions of quantities 
useful for the management of floodplain systems, e.g. 
discharge, water surface elevation, inundation extent 
and flow velocity.
In this context a model consists of a user’s best 
estimate of the processes that are perceived to be 
relevant to the application, and may be tested by 
comparison to analytical solutions, scale models or 
field data. Physical realism is of utmost importance in 
the first class of application, whereas for flood 
management the emphasis may be on computational 
efficiency.

Compound channel flows are fully turbulent over a 
wide range of space scales and unsteady in time, but it 
is computationally prohibitive to simulate flows with 
this level of complexity. Fortunately, the processes 
perceived by modellers to be relevant to the accurate 
simulation of floodplain flow for a particular purpose 
are typically a small subset of the known physical 
mechanisms. The key step in selecting an appropriate 
numerical modelling framework for floodplain flows 
is therefore to identify those processes that are 
relevant to a particular modelling problem and decide 
how these can be discretized and parameterised in the 
most computationally efficient manner.
Naturally rivers flow in the lowest areas in a given 
topography with their discharges flowing inbank and 
this results in identifiable river channels. However it 
happens that sometimes hydrological conditions vary 
with high rainfall and thus higher discharges occur 
that cause the channel to flow in an overbank 
condition, resulting in an increased flow area, depth 
and width. 

In an inbank flow condition flows may be treated as if 
they were predominantly one-dimensional flows in 
the streamwise direction. However, overbank flows 
must be treated differently since three-dimensional 
processes begin to be especially important, 
particularly at the interaction between the main 
channel and the floodplain. 

Water flow in natural channels is almost always  
unsteady. It is a complex phenomenon and cannot be 
understood in all details (Miller, 1975). That is why in 
certain cases unsteady flow is sometimes 
approximated by steady flow, particularly when the 
change of discharge with time is very gradual. In 
hydraulic engineering problems it is important to 
recognise when an unsteady flow may properly be 
treated as a steady flow. The mathematical treatment 
of unsteady open channel flow is an important but 
relatively difficult problem. The difficulty exist, 
basically because many variables enter into the 
functional relationship and because the differential 
equations cannot be integrated in closed forms except 
under very simplified conditions (Mahmoud, 1975) 
For engineering purposes most of the solutions of 
unsteady flow equations are numerical with a great 
number and variety of techniques.
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Mathematical modelling in rivers is the simulation of  
flow conditions based on the formulation and solution 
of mathematical relationships expressing hydraulic 
principles. Advanced mathematical treatment of 
unsteady flow in open channels was started with the 
development of two partial differential equations. 
Although there were many attempts to modify and to 
improve them, the equations remain substantially 
unchanged. The equations resulted from these various 
attempts are more complete and sophisticated but 
reduce to the basic de Saint-Venant equations 
whenever simplified for practical use (Mahmoud, 
1975.  It is not possible to solve de Saint-Venant 
equation analytically, hence the need for numerical 
solution. The finite difference schemes are the 
practical method used to deal with natural channels, 

where the watercourse is simulated by a series of 
computational points (Cunge, 1975).  This method 
was developed because of the limitations imposed on
time step, Δ t, when using explicit schemes (Ligget, 
1975). Each computational points represents an 
elementary reach corresponding to the space step, Δx, 
in which each point corresponds to the cross section. 
This section should be selected to represent all 
important topographical and hydraulical features of 
the reach.

The flow structure of a river that is either straight or 
meandering channel can be represented 
mathematically by use of equations of fluid flow. The 
following section explains in brief the reduction of the 
mathematical equations from 3D to 2D depth 
averaged and to 1D flow in a river section.

2.2. FUNDAMENTAL EQUATIONS
2.2.1 Three dimensional flow
The three dimensional Reynolds averaged Navier 
Stokes equations describe the general motion of 

turbulent flow. Taking flow in one co-ordinate, as in 
the case of a river, the equation can be written as in 
equation 2.1 for a small cross sectional area for an 
open channel.

(2.1)
Where A is the secondary flow term, B is the Weight 
component term C and D are the Reynolds stresses for 
vertical and horizontal planes respectively and x, y, 
and z are the streamwise, lateral and vertical 
directions respectively. U,V,W are temporal mean 
velocity components in the {xyz} directions, ρ is fluid 
density, S0 is channel bed slope, g is gravitational 
acceleration and yx τ and zx τ are Reynolds stresses on 
planes perpendicular to the y and z directions, 
respectively.

Figure 2-1 shows the essential difficulty in analysing 
even a simple steady uniform flow in a prismatic 
channel due to the various forces involved at any 
given point. The Navier-Stokes equations apply at a 
single point in the fluid such as at point J. The driving 
gravity force is balanced by the two Reynolds stress 
terms which control the vertical and lateral shearing 
processes arising from friction forces on the channel 
bed and sides and also the secondary flows traverse to 
the mean streamwise direction of flow with velocity 
components V and W. 

    

Figure 2-1: Flow in a channel (after Knight & Shiono, 1996).
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2.2.2 Two dimensional flow
Usually river engineers are only concerned with the 
parameters at the boundaries and therefore equation 2-

1 above has to be integrated over the depth, width or 
area. This   means that the resulting 3D flow fields in 
figure 2.2 below has to be simplified.

Figure 2-2: Channel subdivision methods for calculation of discharge (after Knight & Shiono, 1996)

Usually lateral distributions are of importance in 
rivers and due to this integration over the depth is 

undertaken resulting to a simplified depth-averaged 
form of the equation  2.2

(2.2)
Where f, λ and Γ are the local friction factor, 
dimensionless eddy viscosity and secondary flow 
parameters respectively 

2.2.3 One dimensional flow
The flow of water in channels is governed by the 
Navier-Stokes equations. A one dimensional version 
of these equations are known as St. Venant equations. 
The resistance laws which are generally adopted for 
open channel flow are those based on steady flow and 
include the Darcy-Weisbach, Manning and Chezy 
formulae. These resistance laws essentially relate the 
conveyance capacity of the channel to the cross-
sectional shape, longitudinal bed slope and resistance 
parameters.
The resistance to flow in a river channel can be 
subdivided into the following components that are 
partially interconnected:

 bed grain roughness,

 form resistance associated with large-scale 
bed undulations,
 flow resistance associated with irregular and 
asymmetric cross-sectional shape,
 roughness height of flexible vegetation,
 flow resistance of stiff vegetation,
 flow resistance caused by the momentum 
exchange between the main channel and the 
floodplain,
 flow resistance caused by the momentum 
exchange between vegetated and non vegetated 
section,
 sinuosity,
 large obstructions, e.g. rocks and woody 
debris, and
 ice cover.

Instead of integrating over the depth, the equation 2-3 
is integrated over the cross-sectional area of the 
channel. For instance the Manning (1857) equation is 
expressed as:
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(2.3)

Where n is the resistance coefficient, A is the 
cross sectional area, R is the hydraulic radius and 
Sf is the frictional slope.

2.2.4 Compound Channels Flows

A compound channel is generally visualized as a two-
stage channel consisting of a main channel and a 
wider overbank flow channel usually referred to as a 
floodplain which inundates during high flows, see 
figure 2-3.  In an attempt to compute discharge 
conveyed in such a compound channel it is realised 

that it is very complex because of the change in the 
resistance material from the main channel, to the 
floodplain this varies because in the floodplain 
vegetation of even buildings could be expected as 
compared to the main channel where boulders or even 
in highly maintained rivers sand and small stones 
could be found. Again, the lateral momentum transfer 
between the main channel and the floodplain does 
decrease the discharge in the main channel and 
increase the discharge on the floodplain. The 
irregularities in the topography which result in cross-
sectional irregularities further make it difficult to 
compute compounded channel conveyance.

  









  yxb H

ys
gHS 

2

1

20

1
1



100

Figure 2-3: Flow structures in a straight two-stage channel (after Kinght & Shiono, 1996).

However, various studies have been carried out in an 
attempt to understand the compound channel 
conveyance and their interrelated factors that affect 
the flow. In Sellin,1964 study it was realised that 
when a river rose above bank-full discharge the 
overbank flow reduced the velocities of the flow 
contained within the main river channel due to an 
intensive vortex shedding at the boundary of the main 
channel and the floodplain and that maximum average 
velocities were present in near bank-full stage.
In Pasche & Rouvé (1985) observations were made 
that when there is no floodplain vegetation, the slope 
of the bank between the main channel and the 
floodplain especially the width of the floodplain has a 
significant effect on the shear stress at the interface; 
but when the floodplain is vegetated, the slope has no 
significant influence on the shear stress, although the 
width of the floodplain has, especially when the 
vegetation is very dense. 
Thornton et al. (2000) found out that apparent shear 
stress at the interface of the main channel and the 
floodplain cannot only be quantified as a function of 
the local turbulence at the interface but also it was 
realised that it is influenced by the velocities, flow 
depth and vegetation density on the main channel and 
floodplain. 
Knight (2006) explains that when discharge in a river 
exceeds bankfull discharge, it changes from inbank to 
overbank flow, a significant change in the complexity 
of the flow behavior results due to differences in 
velocities between the main channel and the floodplain 
flows which produce strong lateral shear layers, which 
lead to generation of organized plan form vortices 
induced by inflection point instability. 
When overbank flows occur, there are major changes 
in the river which result and require special 
considerations the abrupt change at the bankfull stage, 
major interactions between main river and floodplain 

flows. The proportion of flow between sub-areas, 
roughness differences between river and floodplains 
i.e global, zonal and local friction factors, significant 
variation of resistance parameters with depth and flow 
regime and flood routing parameters basically the 
wave speed and attenuation among others.
 In flood problem discharge and stage or water level 
are the two primary parameters.  Knight, 2006, shows 
from laboratory and field stage-discharge curves for 
overbank, that in general Q increases with depth H, 
but once bankfull is reached under certain 
circumstances there is an actual reduction in Q despite 
a larger flow area.Q increases significantly due to 
increased flow area, with the slope of the h versus Q 
curve decreasing as the width of the floodplain 
increases. 

2.2.5 Flood RoutingCunge, Holly & Verwey,1980 
derived and showed that for unsteady one-dimensional 
flow in an open channel, the principles of mass and 
momentum conservation lead to the St. Venant 
equations, equation 2.4 and 2.5, The following 
assumptions are taken into account in developing the 
momentum and continuity equations:
 Velocity is constant, and the water surface is 
horizontal across any channel section.

 All flow is gradually varied, with hydrostatic 
pressure prevailing at all points in the flow. Thus 
vertical accelerations can be neglected.
 No lateral, secondary circulation occurs.
 Channel boundaries are fixed; erosion and 
deposition do not alter the shape of a channel cross 
section.
 Water is incompressible (uniform density), 
resistance to flow can be described by empirical 
formulas, such as Manning's and Chezy's equation.
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Where
Q =discharge, 
A =cross sectional area of flow
q = lateral inflow/outflow per unit length. 

For a momentum correction coefficient, β, equal to 
1.0, the momentum correction coefficient, equation 
may be expressed in terms of the section mean 
velocity, u, to give the friction slope, Sf , as in equation 
2.6:

Steady uniform flow
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            Steady non-uniform flow

                                Unsteady non-uniform flow                                                                 (2.6)

Flow categories can be defined according to the 
number of terms used in the equation above. Steady 
Uniform flow will imply that the weight force 
balances the resisting shear force applied around the 
boundary wetted perimeter. Under these conditions 

Manning or Darcy-Weisbach equations apply. In 
steady uniform flow sf=s0 combining the equation 
above with resistance law e.g. manning equation 
yields the relationship between the unsteady Q and 
unsteady discharge Qn as in equation 2.7:
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Where, these terms are grouped to indicate different 
levels of flood routing model i.e. Kinematic, diffusive 
and fully dynamic wave.

The convective-diffusion equation
The diffusion model results from combining equation 
2.4 and 2.7 to give the convective –diffusion equation, 
which is represented as 
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Where C is Kinematic wave speed and D is the 
diffusion coefficient given by:
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Discharge in a channel during a flood event has 
characteristics of a wave that translates and attenuates; 
however in river engineering C and D are functions of 

discharge Q, as shown by equation 2.9 and 2.10. The 
gradient of the stage discharge curve is related to the 
kinematic wave speed by equation 2-9 and it indicates 
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that during a flood C will vary with Q as dQ/dh and B change with time.
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