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Abstract: Numerical solutions of convection-dispersion 
equation are numerous, but Finite Difference method has 
disadvantages two undesirable characteristics: stability 
criterion and numerical dispersion.
Like most explicit schemes, this method is only under certain 
conditions. If the stability criterion is not met, the numerical 
model is prone to oscillations in space or time.
The paper makes a comparative analysis between explicit 
forms central and upwind and analytical method of a 
homogeneous and isotropic system, 1D. Results will 
emphasize the upwind form is more stable than the central 
form, regardless of variation of Peclet
Keywords: convection-dispersion equation, Numerical 
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1. INTRODUCTION

Once the conceptual model is translated into the 
mathematical model associated with the initial conditions 
and to limit, a solution can be obtained by transforming it 
into a numerical model and using a software solution. 
 Mathematical models in hydrogeology are based on the 
continuum, the real system is considered continuous in 
space and time. Using continuous variables, the 
mathematical model is expressed analytically, for 
homogeneous and isotropic case. 

 Analytical models and corresponding solutions 
characterize small areas, allowing significant 
simplifications of real systems. Groundwater problems can 
be solved analytically so, no-errors (Spitz and Moreno, 
1996). 
 Analytical models cannot be used when the parameters 
vary in the amount studied or when conditions are complex 
edge. In transport problems due to their complexity, 
increasing the size problem, analytical solutions are valid 
for 1D case. If the mathematical model cannot be solved 
analytically be transformed into a numerical model and 
then solved.

Numerical methods allowing the solution to a 
restricted set of points distributed convenient grid using 
Cartesian coordinate system. Partial differential equations 
are solved by discrete schemes, concentrations are constant 
in an element, but vary between different elements. In this 
way, a heterogeneous aquifer is approximated as a 

collection of different homogeneous regions. Solutions are 
obtained in network nodes.

2. STABILITY ANALYSIS¶ 

It will take into account the 1D case, the convection -
dispersion with the following expression:

                          (1)

Transport equation is imposed initial and boundary 
conditions:

c(x=0, t)=c0f(t)                                                   (2)

                                       (3)
Discretisation in space and time of a field with three 

aspects of finite differences is shown in fig1.

Fig. 1 An aquifer in cell division depending on space and 
time

The two forms of upwind calculation are:
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Fig.2 Forms account for upwind

Calculation of finite differences method is:

Fig.3 Calculation of finite differences method 

Depending on the direction of the mesh (spatial and 
temporal) equations are transformed into Taylor series:
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- for t constant
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For i=0,1,2,....m and j=0.1,2,3,...n

Explicit form has the following expression:
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Where:

Pe=
D

xva (David, 98, pg167)                        (11)
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 is the number of Zerfall              (12)
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 Courant criterion                            (13)

3. CASE STUDY

One way of solving the transport equation is the finite 
difference method is ASMWIN program 6.0, uses two 
types central and upwind. 

Modeled area is shown in Fig.4

Fig.4 Modeled area

For the simplest case: if a D homogeneous environment, 
the relationship between analytical and finite differences 
whore two forms of the following issue:

Fig.5 Correlation between analytical (as), the central finite 
differences (DC) and upwind finite differences (with) for 

convergence and stability field, on = 2, continuous injection

Fig. 6 Correlation between analytical (as), the central finite 
differences (DC) and upwind finite differences (with), the 

unstable area, on = 4, constant injection
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Fig. 7 Correlation between analytical (as), the central finite 
differences (DC) and upwind finite differences (with), the 
unstable area, On = 6.66, constant injection
Table no.1.

As we see in graphic is more stable upwind form than 
central  
 Next I followed if the condition that the error at time t +1 
is smaller than the error at time t. 
Have been elected three times (T1, T2, T3) and followed 
the evolution of the error.

Past errors with red in table shows oscillations appeared 
to central form

L = 

10 m

Time

100
ca

ccca 


or

100
ca

cuca 


Analitic 
concentration

Central 
concentration 
form

Upwind 
concentration 
form

T1=2.54E+08s
ccca / =81.33% si 

cuca / =83.13%

1.4E-4 7.51E-4 8.30E-4

T2=5.17E+08s
ccca / = 34.42%  

cuca / =18.13%

13.59 10.11 16.60

T3=8.68E+08s
ccca / =0.42%  

cuca / =3.33%

49.20 49.41 47.61

L = 5 

m
T1=2.54E+08s

ccca / =0          cuca / =0 3.19E-13 0 0

T2=5.17E+08s
ccca / =259.39%  cuca / = 

31,17%

9.56 2.66 13.89

T3=8.68E+08s
ccca / =0.38%  

cuca / =2.73%

49.94 49.75 48.61

L = 3 

m
T1=2.54E+08s

ccca / = 24.25%      

cuca / =99.99

2.78E-15 3.67E-15 5.63E-8

T2=5.17E+08s
ccca / =742.85%   

cuca / =48.08

6.49 0.77 12.50

T3=8.68E+08s
ccca / =11.98 % 

cuca / =2.08%

49.99 56.80 48.97
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4. CONCLUSIONS

The analysis of data obtained by running the program 6.0 
ASMWIN and compare them with analytics observed 
upwind shape is stable and convergent, independent of the 
variation coefficient dispersivitate lengthwise and core 
form is unstable. In the criterion for compliance, the higher 
volatility increases, this condition is no longer respected. A 
great influence on the results of an assessment is the 
coefficient of dispersion, it's best for him to determine the 
ground.
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