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Abstract: A short overview of some own results relating 
the modelling of flow- and transport processes in porous 
media obtained in the last decades is discussed. There 
will be referred to the following themes: general aspects 
of the mathematical modelling and the reliability of the 
basic equations of the groundwater flow with  results 
embodied in several theorems related to the 
groundwater flow properties and to  the validity of the 
classical linearization of the basic equations for unsteady 
groundwater flow; mathematical modelling and calculus 
methods for drainage and groundwater 
supply/recover/recharge systems including classical 
analytical solutions for subsurface drainage related to 
the drain spacing and to the reversible facilities in sub 
irrigation and the possibilities to  apply elevated 
methods such the  Analytical Element Method, 
Boundary Element method and Multi Objects Method
(AEM_BEM_MOM) and as well as their coupling for 
modelling complex groundwater Supply Recovery/ 
Recharge (GWRS/RC);

1. INTRODUCTION,
BASIC ECUATIONS

It is known that the flow equation and the balance
equation (continuity equation) constitute the
fundamental equations for modelling groundwater 
flow and different transport or transfer processes in 
porous media. Currently will be considered the 
saturated groundwater flow when the flow equation
is the Darcy Equation and its generalized differential 
forms for 1D, 2D and 3D case. It describes the 
movement of the fluid e.g. water in the saturated 
aquifer as continuum, and represent the mathematical 
relationship between the specific discharge (flow 
velocity) V of the fluid in the aquifer and the 
hydraulic gradient (piezometric head gradient). The 
introduction of the continuum models for the aquifer–
groundwater system enable the mathematical 
representation of the system’s characteristics in spatial 
functions  like as  h(x, y) and v(x, y) in the case  of 2D 
steady flow and h(x, y,t) and v(x, y,t) in the case of 2D 
unsteady flow. The balance equation or continuity 
equation for groundwater flow will be derived through 
the balance of fluid masses taking into account the 
inflow and outflow in a controlled volume of the 

porous media, including the effects of source, leakage 
or groundwater recharge on the elementary volume.
From these equations for groundwater flow currently 
a basic equation will be derived in term of 
piezometric head.
The basic equations for 2D groundwater flow 
obtained combining both Darcy and balance equations 
lead to the well known Boussinesq’s nonlinear partial 
differential equations of second order in term of 
piezometric head as solution function h(x,y,t) ((Bear, 
1972):
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In the case of the steady flow the basic equation 
becomes:
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In the same way we obtain the basic equations for 
other processes which superimposed on the 
groundwater flow like: spreading or recovery of 
LNAPL (light non-aqueous phase fluid) above of the 
groundwater table, transport of in ground water 
dissolved pollutant, heat transfer and other processes. 
In these cases the basic equation of the considered 
process and the basic equation of the groundwater 
flow form a coupled equation system. 
There are to mention also some other forms of the 
basic equations which currently are used in the 
technical applications: 

-The governing equation for free LNAPL
transport in homogeneous (i.e. kl, kw are constant) 
unconfined aquifer in term of LNAPL thickness (hl) 
over of the ambient groundwater has the form 
(Carapcioglu at all 1996), (Liao and Aral 2000), 
(David 2004):
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where nl denotes the porosity, VW  is the velocity of an 
existing ground water flow and kl, kw is the hydraulic 
conductivities for LNAPL respectively water . If VW

=0 eq. (4) coincide with the equation (1) modeling 
unsteady groundwater flow in unconfined aquifer in 
term of the entire groundwater depth (h). 

-The governing equation of pollutant transport 
or heat transfer by conduction in aquifer is derived 
on the same way and it known as:

( ) 0


     



pwV

D
t R

   (4) 

In this equation Φ is the polutant concentration 
(Φ=C) or the temperature field (Φ=θ) and R is the 
retardation factor. Vpw is the pore velocity of an 
existing ground water flow. D denote the 
diffusion/dispersion or the thermal diffusivity 
accordance to the considered process.
These basic equations allow the solving numerous 
important technical applications of the groundwater 
engineering. To obtain unique solutions for practical 
problems, boundary conditions and initial conditions 
are necessary. So will be formulated boundary value 
problems (BVP) or initial- and boundary value 
problems (IBVP).
In the well known monographs are discussed several 
results for general theoretically solution sensibilities 
as well as for practical applications Muskat (1937), 
Polubarinova-Kochina, P. Ya. (1962), Bear, J.(1972), 
Gheorghita, St., (1966) and other famous authors. I 
myself have some general properties of the 
groundwater flow was derived as theorems, the in the 
Communications of the French Academy were 
published, David (1969 and 1971). In addition it is to 
mention also the monograph published in 1998 in 
Germany (David, I., Groundwater hydraulics, 
Couvillier Publisher).
The main task of the engineer is to find solutions of 
such BVP and IBVP problems, which enable the 
planning of different systems like drains, groundwater 
supply and recharge systems (GWRS/RC), estimation 
of light non-aqueous phase liquids (LNAPL) 
spreading on the groundwater and her recovery, in situ 
treatment of iron-polluted groundwater and solving 
heat transfer problems by geothermic energy plants 
etc. 
Only a small number of exact solutions of this 
nonlinear partially differential equation are known to 
date but they are very effective to a rapid analyze the 
influence of different parameter and to prove the 
reliability of the approximated solutions and of the 
numerical methods. 
These kinds of solutions are developed especially 
several decades ago while numerical solutions are 
grown in importance in the last decades. I appreciate 
that approximations and the analytically approaches 
remain always actually if it is possible it to obtain. 
In the present paper only some own results concerning 
both aspects analytical and numerical solution will be 
presented.

2. ABOUT  THE RELIABILITY OF 
THE LINEARIZED BOUSSINESQ’S  PARTIAL 
DIFFERENTIAL EQUATION

The first aspect which we discuss refers to the 
reliability of the linearized form of the general 
nonlinear Boussinesq’s partial differential equation 
(1) or (3). 
It is known that a very effective approach to obtain 
solutions of the Boussinesqu equation is the use of the 
linearized form of this equation. There are several 
techniques for linearization such nonlinear PDE 
presented in (Bear, 1972). The most widely used 
technique is to introduce a decomposition of the 
thickness hl in the form 
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ha(t) is the average thickness at time t and h is the 
deviation of the hl from ha which usually is calculated 
as a simple average:
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If the thickness hl(x,y,t) varies only slightly relating to 
the average thickness ha(t), i.e. 

h<<ha (7)

the nonlinear equation (1) becomes a linear PDE one: 
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This linear PDE, which approximate very closed the 
original nonlinear equation (1), can be interpreted as a 
two-dimensional diffusion equation with time 
dependent diffusion coefficient D(t).
 For this linear PDE vast number of solutions are 
obtained for various boundary conditions dealing with 
groundwater flow (e.g. source solutions, error 
function solutions, successive steady state solutions 
and so an); (Polubarinova-Kochina 1962; Bear 1972) 
which are unanimous admitted. 
Liao and Aral (2000) used the same average 

technique for modelling LNAPL spreading. We have 
shown (David 2005) that this approach can lead to 
significantly large errors. For that purpose the 
solutions of the linearized equation obtained with the 
simple averaging method (6) will be compared with 
the exact solution of the nonlinear equation for a 
radial symmetrically spreading of an LNAPL mound 
of constant volume on the horizontal groundwater 
table. Some results we can see in Figure 1.
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Figure 1 LNAPL thickness profiles by a radial symmetrical 
spreading as function of time t and x=0 at y=0 calculate as: 
EAS-exact solution and NS-A1- using simple average 
thickness (6)

We can see that by LNAPL mound thickness appear 
large errors especially at x=0 where the error achieved 
about 50%.
To reduce the deviations of the LNAPL thickness 
obtained as solutions of the linearized equation using 
the simple average technique (13), in comparison with 
the exact solution, a new average technique for the 
average free product thickness will be suggested and 
tested:
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In Figure 2 we can see the LNAPL spreading after 5 
days exact solution (EAS) and numerically (NS-A2)
using the proposed second order average thickness (9)
.   

Figure 2 LNAPL thickness profiles by a radial symmetrical 
spreading as function of x=0 at y=0 after t=5days calculated 
as: EAS-exact solution and NS-A2- using the proposed 
second order average thickness (7)

The results shown that the new Weighted Domain 
Averaging Technique (9) which has been proposed, 
reduce substantially the calculus errors and 
consequently allows the improve of the existing 
numerical and semi-analytical calculation methods for 
LNAPL mound spreading and migration.

3. MATHEMATICAL MODELING OF 
DRAINAGE SYSTEM

The first own research regarding the Drainage systems 
I have developed in the 70th years  with colleagues 
Wehry and Man which is summarised in  a book 
entitled “Actual problems in drainage technique” 
published in 1982. These results were further 
developed in recent years especially through 
developing of computer programs using the 
elaborated theoretical basis. In this direction it is to 
mention the paper entitled  “Subsurface drainage and 
its facilities in reversible sub irrigation” from 
Teusdea, David and Mancia, (2008) published by 
DAAAM International, Vienna, Austria in Annals of 
DAAAM for 2008 & Proceedings of the 19th 
International DAAAM Symposium. In this paper, the 
previously developed formulas from David (1983 and 
1985) was used to calculate the drain- spacing  under 
consideration of both functions of a drainage system, 
as drainage and as sub irrigation (Fig.3). 

Figure3. a) Scheme of the subsurface drainage structure; 
b) Scheme of the sub irrigation structure.

4. MODELLING OF GROUNDWATER 
SUPPLY AND GROUNWATER RECHARGE 
SYSTEMS

Sustainable groundwater management demands the 
use of large-scale models which are 1st order models 
in spatial dimension includes large-scale elements and 
components such as rivers, lakes, natural groundwater 
recharge and also groundwater supply and recharge 
systems (GWRS/RS). Regarding this scale, the effect 
of a GWRS/RS can be expressed with only global 
discharge of these objects.
From the 1st order modelling which usually will be 
realised using FEM the domain of influence of the 
GWS/RS can be bounded and represents a model 
region of 2nd order (Fig. 2b) in which the components 
of the GWS/RS like wells, partially penetrated wells, 
well with laterals, drains etc. are of great importance. 
To capture the local characteristics of the flow in the 
vicinity of the objects of a GWS/RS, like partially 
penetrating wells or wells with laterals which usually 
act like singularities a local analysis of the flow 
features is necessary i.e.3nd order modelling 
Whereas in the last decades large-scale flow- and 
transport models were further developed, mainly by 
FEM, objects of water supply and recharge are still 
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dimensioned with formulas which have become 
obsolescent. These formulas but also the FEM-models 
are inadequate to take account of inner flow in the 
objects as well as of their mutual interactions in the 
near-region. A very powerful method for the 
treatment of singularities in domains with corners and 
in infinite domains was introduced by using a special 
mesh grading. To capture the essential characteristics 
of flow in the vicinity of the objects of a GWS/RS, 
like partially penetrating wells or wells with laterals, a 
suitable alternative is to use basis functions of the 
potential theory. 
In the present paragraph basis functions of 2D- and 
3D potential theory will be used to build analytical-
and boundary elements (EM and BEM) and so called 
integrated objects for 2nd and 3th order modelling of 
GWS/RS. We will be discuss especially several own 
results developed in the last decade.
The analytical element method (AEM) for modelling 
ground-water flow in shallow regional aquifer which 
incorporate local 2D/3D flow features as well have 
been developed and put together by (Strack 1989) and 
(Haitjema 1995). Several results are obtained by 
(David 1977) for modelling radial collector well with 
laterals using semi-analytical methods (e.g. we are 
used the conformal mapping technique and line 
strength distributions) and by (David et al., 1995, 
1998, 2002) for modelling groundwater flow 
generated by groundwater supply and recharge 
systems (GWR/RS) in a bounded flow domain using 
coupled AEM and BEM. The partially penetrating 
well (pW) is one of the most important component of 
a GWR/RS. The modelling of this 3D flow has been 
analysed by (Muskat 1937), (Polubarinova-Kochina 
1962), (Dagan 1978) and (Haitjema 1982), (Haitjema 
et al., 1988, 2000). The solutions obtained for pW or 
horizontal well (e.g. radial collectors of a well with 
laterals) are achieved by assuming that the flow is 
generated by a distribution of  sources or line sinks of 
unknown strength along the well axis, whose values 
can be determined from the boundary conditions such 
as the given head on the well screen. The pW is 
divided into N intervals (i.e. well elements) and the 
source strength distributed along the well axis is 
replaced by the specific discharge as a constant 
strength for each interval i.e. ψi=qi (i=1,2, ...N). So the 
discharge Q of the pW can be calculate as a simple
sum Q=ΣψiΔLi= ΣqiΔLi. 
In numerous practically cases of GWR/S, it is 
necessary to take into account the internal head loss 
such as in the relatively long laterals of the collector 
wells, and in recharge wells like boreholes (pW) filled 
with gravel which are used for artificial recharge of 
the aquifer especially in wooded areas (David et al.,
1988, 2002). Since the inner head losses influence the 
piezometric head distribution along the well or drain, 
and the changed piezometric head leads to change of 
the outflow distribution (e.g. Figure 4 shows this for a 
recharge borehole filled with gravel). The modelling 
of such a coupled flow system requires iterative 
algorithmic procedures which will be presented later.

Figure 4 Scheme of the coupled internal and external 
groundwater flow of a partially penetrating recharge well or 
borehole filled with gravel.

To solve all these problems we developed two 
methods including computer programs also:
- Coupled Analytical- Elements and Boundary-
Elements- Method (C-AEM/BEM) for GWRS/ RC-
System comprising components whose radius is very 
much smaller her length which we designated as lines 
objects and
-Generalized Multi-Objects-Method (G-MOM) 
comprising complex 3D components including any 
general elements and sub regions with different 
permeability.
Some parts of these results are or will be presented 
and published by internationally Conferences (David 
2004, 2005, 2010), (Zang & David, 2005).

The C-AEM/BEM -based modeling consider a
GWRS/RC-System comprising components such as 
partially penetrating Wells (pW(j)),  horizontal objects 
(hObj) (e.g. well with laterals (Wl),  horizontal Drains 
(Dr) and partially penetrating Trenches (Tr)) in a 
bounded flow domain is shown in Figure 4. This local 
model obtains its boundary conditions through 
regional AEM or FEM modelling. The closed 
boundary at the local scale (Figure 5 a) is modelled 
with the indirect BEM, while the GWR/RS is 
modelled with the AEM through line strength 
distribution along the axis of its components (objects).  
The potential function (M) for the local 3-D flow-
system in a large extended  plane domain Do

+ with the 
boundary Co = CoH U Coq U Co (Figure 5 can be 
derived by superposition of all partial potentials 
which represent the contribution of the boundary 
conditions, recharge area  and of the horizontal and 
vertical components of the GWR/RS.
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Figure 5 Scheme of the bounded flow domain (a) with 
several components of a GWRS/RC including partial 
penetrating Wells (pW(j))/(b)  horizontal objects such  as 
well with laterals (Wl),  horizontal Drains (Dr)/(c) and 
partially penetrating Trenches (Tr)/ (d)

The specific discharge in the direction “n” qn(M) is 
given by Darcy’s law:

The first term in both equations represent the effects 
of the boundary Co with its given boundary conditions, 
given head as CoH, inflow/outflow as Coq and Co as 
impervious boundary and are modelled by means of 
BEM. In the equations (1) and (2), ψ(P) is the strength 
of the singularities distributed along the boundary Co,  
G(M,P) is the known logarithmic potential and F(M,P) 
its derivation in direction “n” located in M(x,y,z). For 
the numerical implementation, these terms are 
expressed with constant boundary elements i.e. 
unknown constant strength for each boundary 
element. The second term represents the effect of the 
recharge area D, with (P) the recharge rate 
distribution. The third terms represent the effect of the 
horizontal objects, with the strength hObj distributed 
along the axes of these objects. These terms are 
implemented using a simplified procedure: 2D 
horizontal analytical elements as line sinks (LSE) 
with constant strengths and an additional head loss to 
model the 3D effects in the vertical plane (Figure 5 c, 
d). The additional head loss hv(hObj) in a point P of 
the hObj can be calculated (David 1977
The last terms of (1) and (2) represent the potential 
and specific discharges respectively, generated by 
partially penetrating recharge wells (pW(j)) located in 

W(j),  j = 1, 2, ... , NpW with NpW the number of the 
pWs. 

For modelling pW the well length LW is divided 
into well elements (pWEk) with length LWEk and the 
line sink (LS) distributions on the well axis has an 
unknown constant strength k for each well element 
(pWEk). The unknown strength distributions  along 
the boundary, along GWRS/RC components (hObj, 
pW) and the integration constants c will be determined 
from the equation system which we obtain from the 
integral representations (10) and (11), taking into 
account the above described numerical approach and the 
given boundary conditions. For the hObj and pW(j) the 
boundary conditions are given heads on the drain/well 
wall (envelop/screen) respectively. 
For the purpose of these calculations, an AEM/BEM-
based Computer Programme has been developed and 
several results obtained (David et al., 1995, 1998 
2002) using the simplified assumption that the line 
sink strength distribution along the well and drain axis 
can be replaced with the specific discharge, e.g. for 
pW-elements

   (12)

So the total discharge is found by adding up the 
strengths:    

WE WEN N

WEk WEkpWEk,k 1 pWEk,k 1pW
i=1 i=1

 = q ψQ L L      (13)

A first example using the developed program is the 
specific discharge distribution along a collector pipe 
of a radial collector well (CWL) with three horizontal 
laterals (radial drain pipes) placed at the centre of a 
confined aquifer depicted in Figure 5. 

Figure 6 Influence of the inner head loss in the lateral on the 
discharge distribution per unit length for a radial  collector 
well with three laterals 

The parameters for this example (Figure 5) are: 
aquifer depth H=10m, distance from the vertical shaft 
centre to the end of the collector LCWL=50m, length of 
an collector element LCE=6,25m (7 inflow elements), 
influence radius of the well R=200m, diameter of the 
collector pipe dCWL=0,25m, drawdown in the shaft 
S0=10m, hydraulic conductivity of the aquifer 
kf=0,003m/s and the roughness of the pipe wall of 
3mm. We observe that the inner head loss can have a 
very important influence on the specific discharge 
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distribution and on the total discharge as well (QCWwith 

hl= 0,78 QCWwithout hl) ; QCWwithouthl/(kfHS0)=3,02. On 
the basis of numerous examples, we come to the 
conclusion, that for collector wells with laterals the 
simplified assumption (12) can be accepted in all 
practical cases.

Figure 6 Dependence of the line sinks strength distribution 
along the well axis of a partially penetrating for different 
well radius (parameter rpW/LWE ) and for 5 LS

 In Figure 6 the dependency of the strength 
distribution on the correlated quotient rpW/LWE (i.e. the 
well radius to length of the well element) can be 
demonstrated. 
It can be shown that the line sink strength 
distributions obtained for rpW=0,5m and rpW=1.00m 
become oscillatory and so as discharge distribution is 
not realistic. Only the distribution for rpW=0,25 come 
close to the realistic distribution. Furthermore, it is to 
be mentioned that
strength distribution also leads to the same results.

Results show that in the case of pW with a relatively 
large diameter, the discharge distribution along of the 
pW can be very different in comparison to the LS 
density (strength) distribution along the well axis, and 
therefore, invalidates the stated assumption (12). In 
this case, therefore, the line sink strength distribution 
has, among others, only a mathematical meaning as a 
singularity distribution along the pW axis and the 
assumption (12) does not apply.
So the assumption that equation (12) is only for well 
elements with a relatively small diameter in 
comparison to the length of the well element is valid, 
i.e.

dW LWk,k+1 , ΨLS Wk,k+1 ≈  qWk,k+1  (14)

For well elements with a large diameter LWE , equation 
(12) is not more valid i.e.:

dW  >LWk,k+1 , ΨLS Wk,k+1 ≠  qWk,k+1 (15)

In this case an improvement of the existing method 
and its implementation was necessary which will be 
presented in the next.
The Generalized Multi-Objects-Method (G-MOM) 
comprising complex 3D components and sub regions 
with different permeability. One considers a bounded 
continuum domain Ω with the boundary . The 
domain Ω includes several Non-Singularity-Objects 
(NSO) and Singularity-Objects (SO) as well as 
defined sub-domains:

iNSO NSO iNSO

jSO SO jSO

,  i=1,2,...,n  with the closed boundaries  and

,  j=1,2,...,n  with the closed boundaries





   

  

In terms of groundwater flow in porous media the 
NSO represent inclusions with different hydraulic 
conductivities which can be also impervious or a hole 
filled with water. SO represent discharge or recharge 
objects like wells, drains or ditches located arbitrarily 
and shaped like a stretched tube.

Figure 7 Scheme of Generalized Multi-Objects-Sytem comprising complex 3D components and sub regions with different 
permeability.
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The flow domains are the interiors of all NSO (i.e. 
+

NSO) and their complementary region to  (i.e. +) 
are defined as follow:

NSO

SO

n

NSO iNSO
i 1

n
+

NSO jSO
j 1

   and
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The searched solution is the potential function

+
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which satisfied the following boundary conditions and 
contact conditions on the boundaries
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= ;

,   and   are gived functions
n

 








 

  


 


Mesh dependent methods, namely the Finite 
Differences Method (FDM) and the Finite Element 
Method (FEM) are able to obtain approximate 

descriptions of the domain geometry and the 
governing equations. Their major disadvantage is their 

tendency to generate extensively huge data sets and 
equation systems for three-dimensional problems. 
Another disadvantage appears when we put these 
mesh dependent methods into practice for NSO and 
SO. It is difficult if not completely impracticable to 
describe arbitrary distributed NSO and SO using 
FEM/FDM because it requires an update or costly 
regeneration of the 3D mesh after each modification 
of the external boundary or of the interior objects (i.e. 
the distribution and the shape of NSO and SO).
A more efficient approach to solve such complex 
potential problems is to find an adequate method 
which allows the determination of the required 
internal/external potential functions. It is possible by 
means of boundary integral representations using only 
boundary elements or distributed singularities to 
shape NSO and SO respectively.

The searched functions +
iNSO (x),  (x)  can be 

represented as surface single layer potentials similar 
to the 2D problems analyzed by (DAVID 1995). 
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i j l

1
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1 1
(x) d d dl c
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 


   

 
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(19)

where

iNSO iNSO j( ),  ( ),  ( ) and ( )   
          are 

unknown density distributions along the different 
boundaries. In the same representation lj

(n) are the 
spatial supports of the singularities to generate 
Singularity Objects (SO): point singularities (n=0), 
line singularities (n=1) or surface singularities (n=2).
In Figure 8 are presented some representative example 
calculated with the on MOM basis developed PC-
program. 
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Figure 8 A summarized scheme of the developed Software-Implementation for GMOM

5. CONCLUSIONS

It is to note noted that although the area of the  
Groundwater modeling is a classic research field  
there are always new problems to investigate and to 
find better solution methods.
In this context the paper present some new results 
which supplemented the current methods. In this 
context the paper present some new results which 
supplemented the current methods. One of these is the 
proposal new average method for the linearization of 
the Boussinesq partially differential equation. The 
proposed linearization second order eliminates 
practically the approximation errors which are 
introduced by linearization. So it is possible the 
extension the application field of the linearized 
Boussinesq equation to solve new problems like a 
LNAPL spreading and recovery modeling.
The Generalized Multi-Object Method (GMOM) is 
able to solve groundwater flow problems of arbitrary 
geometrical configuration of 3D heterogeneities 
elegantly. We solve singular integral by distributing 
the density contours on additional boundaries, which 
lies outside or inside the real boundaries. As an extra 
advantage, this generates smooth potential distribution 
even close to and on the boundaries after 
discretisation and numerical integration. This mesh 
less method allows the reduction of the discretization.
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