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Abstract – The Paper present examples to solve a 
steady-state groundwater problem in which the aim is 
to calculate steady-state H distribution along a two-
dimensional hillslope. This example presents usually
methods in EXCEL or PASCAL to calculate H 
distribution. Several examples - easy and moderately 
difficult - illustrate the use of numerical methods.
Keywords: groundwater, hillslope, flow, boundary 
conditions

I. INTRODUCTION

The purpose is to solve numerically a steady-
state groundwater problem in which the aim is to 
calculate steady-state H distribution along a two-
dimensional hillslope.  Mathematically the hillslope 
is considered to be rectangular as shown in Fig. 1.
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Fig. 1 Illustration of the steady state groundwater flow 
system

Toth (1962) has analyzed this type of 
groundwater flow system and Wang and Anderson 
(1982) have solved the problem using FORTRAN.

Fig. 1 represents a so called deep hillslope 
profile bounded on the right by water divide (zero-
flow boundary) and on the left by stream in the valley 
bottom. The left boundary is also a zero-flow 
boundary since there is no exchange of water 
between the hillslopes located on the left and right 
side of the stream.  Aquifer bottom is assumed 
impermeable and therefore, it is a zero-flow 
boundary. Left, right and bottom boundary conditions 
are of Neumann type (flux specified). Water table of 
the aquifer is assumed to vary linearly according to 
line 1..3 in Fig. 1. The upper boundary of the model 
follows line 1..2 indicating that we need to define a 

Dirichlecht boundary condition as an upper boundary 
condition.  

The aquifer is assumed to be homogenous, 
isotropic and in steady-state condition. The steady-
state assumption is valid when average value of water 
table position is used as boundary condition.  It can 
be  assumed that water table position at the beginning 
of the year is the same as position at the end of  the 
year, i.e.  There is no net accumulation or loss of 
water from the system over long time periods.  
Therefore, the two-dimensional Laplace’s equation 
(1) is the required governing equation.
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If hydraulic conductivity is not zero, zero-flow 
boundary is possible only if hydraulic gradient is 
zero: flux is calculated using  Darcy’s  law , qx = -K 
dH/dx  = 0 if dH/dx = 0.  Boundary condition at the 
top of the aquifer is assumed to vary linearly between 
point 1 and 2 in such a way that at point 1 H equals 
the thickness of the aquifer,  H0, and increases with 
slope s0 and reaches its maximum at point 2 where 
x=L.  The mathematical model of the  groundwater 
flow system can now be summarized as:
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Frame 1.  Summary of the mathematical model 
of the stead-state groundwater flow system
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II. EXAMPLE 1

The purpose is now to solve numerically the 
steady-state groundwater problem shown in Fig.  1
and summarized in Frame 1. The solution will be 
obtained using EXCEL. The numerical values of the 
constants of the problem are as follows:  L=100 m,   
H0=50 m and s0= 5/100 = 0.05.  The number nodes 
in x-direction is NX= 11,  and the corresponding 
value for  NY=6. This implies that ∆x= ∆y=10 m.  
The grid is mesh-centered indicating that nodal points 
are located along the boundaries (in block-centered 
grid the nodal points are at the center of the grid).  

The iteration equation for inner nodes (i = 2, .. 
NX-1; j = 2, .. NY-1) is shown in (2).

4/)( 1,1,,1,1,   jijijijiji HHHHH        (2)

Mathematical treatment of boundary conditions 
need to examined more closely.  Dirichlecht 
boundary conditions are easy to apply: in those cells 
known H-values are directly given.

The mathematical treatment of boundary 
conditions is illustrated in one-dimensional case in 
Fig. 2.  Consider that the left boundary where i=1 is a 
no-flow boundary. We extend the region under 
consideration one node left, i.e. we define a so called 
fictitious node where i=0.  The flow across the left 
boundary is zero if   H/ x=0 at x=0, which implies 
that  (H2 - H0)/(2∆x) = 0 which is possible only if H0 
= H2.
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Fig. 2 Treatment of no-flow boundary conditions with 
fictitious nodes.

       In numerical solution methods Neumann-type of 
boundary conditions can be treated in two different 
ways:
1. With direct use of the  fictitious nodes.
2. The iteration equations are modified for 
Neumann-type boundaries.

      In our problem we have a no-flow boundary 
along the boundary where i=1.  By applying the 
iteration equation (2) for node (1,j) we get

4/)( 1,11,1,0,2,1   jjjjj HHHHH        (3)

and here we need the head H0,j at the fictitious node.     
      It is straightforward to replace H0,j with H2,j 
which makes the solution possible.  For left boundary 
this would lead to equation

4/)2( 1,11,1,2,1   jjjj HHHH                (4)

and this would be the solution using option 2.  
However, it is much more elegant to use option 1. 
and include the fictitious nodes in the nodal network .  
In EXCEL - solution this implies that for left 
boundary there is one extra column where a simple 
equation is given  as shown below.  Boundary nodes 
(1,j) are calculated in column D and the nodal value 
of the fictitious node C5 is replaced by value in E5 
because H0,j = H2,j.

Row/Column      C              D       
E

      
F

4 ... ... ... ...
5  =E5    =(D4+D6+C5+E5)/4 ...   ...
6 ... ... ... ...
7 ... ... ... ...

The final results are shown in Table 1.  It is worth 
mentioning that in EXCEL - solution it is useful to 
distinguish different type of cells with different 
background color. These include Dirichlecht 
boundary cells, impermeable boundaries, fictitious 
nodes and ordinary nodes inside the grid (inner cells).  
Later on it is much easier to modify the grid if the 
background colors are used.

     i=1        i=2        i=3       i=4         i=5       i=6        i=7       i=8           i=9       i=10     i=11      
50.00 50.50 51.00 51.50 52.00 52.50 53.00 53.50 54.00 54.50 55.00
50.79 50.97 51.29 51.67 52.08 52.49 52.91 53.32 53.69 54.01 54.19
51.22 51.31 51.53 51.81 52.14 52.49 52.83 53.16 53.45 53.66 53.75
51.47 51.53 51.69 51.92 52.19 52.48 52.78 53.05 53.28 53.44 53.49
51.61 51.65 51.78 51.98 52.22 52.48 52.74 52.98 53.18 53.31 53.36
51.65 51.69 51.82 52.00 52.23 52.48 52.73 52.96 53.15 53.27 53.31

Table 1 Solution of the steady-state groundwater 
example of Fig. 1 using Gauss-Seidel iteration with 

EXCEL.

III. EXAMPLE 2

In Example 2, the steady-state groundwater flow 
system of Fig. 1 is solved using SOR-method
(Successive Over Relaxation).  The changes to the 
program are very small, i.e. the formulas for the inner 
cells are replaced by the iterative equation (5) of the 
SOR-method:

4/)()1( 1,,1
1
1,

1
,1,

1
,

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji HHHHHH 







      (5)

Row/Column      C              D       
E

      
F

4 ... ... ... ...
5  =E5    =(1-Omega)*D5+

Omega*(D4+D6+C5+E5)/4
...   ...

6 ... . .. ... ...
7 ... . .. ... ...

The user of the program in EXCEL file should see 
that the number of iterations required is reduced 
considerably as compared to Example 1 when 

relaxation parameter  is around 1.6..1.7.   This can 
be seen e.g. by giving different values for H0 and 
comparing the rate of convergence of SOR- and 

Gauss-Seidel methods (SOR = Gauss-Seidel if 
=1.0).
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     Toth (1962) has published an analytical solution 
for this problem:
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     The analytical solution is also given in the 
EXCEL file and the results of the comparison 
between the analytical solution and numerical 
solution using the SOR-method is  shown in Table 2 
for some selected points.

            x          y     H(x,y)     SOR Error (m) Error (%)
0 50 50.00625 50 0.006254 0.012507
0 40 50.85472 50.7996 0.055121 0.108388
0 30 51.26794 51.23561 0.03233 0.063062
0 20 51.51325 51.48997 0.023276 0.045185
0 10 51.64607 51.62626 0.019805 0.038348
0 0 51.68829 51.66941 0.018874 0.036515

100 0 53.31171 53.33016 -0.01845 -0.03461

Table 2 Comparison of analytical and numerical 
solution (SOR-method) of the steady-state 

groundwater flow system of Fig. 1.

IV.EXAMPLE 3

     Solution of the groundwater flow system of Fig. 1
can be carried out using some programming language 
and in this case it is necessary to do the iteration in 
the program. The following example uses Pascal for 
solving the problem with the SOR-method.  The 
Pascal - program is given in Fig. 3.

Const
  NX=11; NY=6; {Number of nodes in x- and y-directions}

dx=10.0;  SlopeGW=0.05;  H0=50.0;
  Omega=1.7;  MaxIter=1000;  I terationStoppingCriteria=0.001;
Var
  H:array[0..Nx+1,0..Ny+1] of real; {fictitious nodes: i=0; i=NX+1: j=NY+1}
  i,j,iter:integer;
  OldH,Error,MaxErr:real;
begin                      {MAIN PROGRAM BEGINS..}
  for i:= 0 to NX+1 do     {As initial condition for all nodes H[i,j]=H0}
    for j:=0 to NY+1 do
      H[i,j]:=H0;
   for i:=1 to NX do           {Boundary condition at the top of aquifer}
     H[i,1]:=H0 + SlopeGW * DX * (i-1);
iter:=0;                                               {iteration begins}
repeat
  inc(iter);
  MaxErr:=0.0;
   for j:= 1 to NY do {Left and right boundary condition at the beginning of each iteration}
    begin
       H[0,j]:=H[2,j];
       H[NX+1,j]:=H[NX-1,j];
    end;
     for i:=1 to NX do                        {Bottom boundary condition}
        H[i,NY+1]:=H[i,NY-1];
   for j:=2 to NY do                              {Sweeping node-by-node}
    begin
      for i:=1 to NX do
       begin
         OldH:=H[i,j];                  {store temporarily old iteration}
         H[i,j]:=(H[i-1,j]+H[i+1,j]+H[i,j+1]+H[i,j-1])/4;
         H[i,j]:=Omega*H[i,j] + (1.0-Omega)*OldH;
         Error:=abs(H[i,j]-OldH);
         if(Error>MaxErr)then MaxErr:=Error;
       end; {end i}
    end;{end j}
until(Iter>MaxIter) or (MaxErr<IterationStoppingCriteria);
{Continue iteration as long as MaxErr less than I terationStoppingCriteria

  or Max. number of iterations exceeded}
writeln('Solution:');
writeln('Number of iterations = ',Iter:7,'   Omega=',Omega:6:2,'   Max.error= ',MaxErr:12);
for j:=1  to NY  do
  begin
    for i:=1 to NX do
      write(H[i,j]:7:2);
    writeln;
  end;
  write('Press ENTER to continue..'); readln;
end.

Fig. 3 Pascal-program for solving the steady-state 
groundwater flow system of Fig. 1 using the SOR-method

     The example program includes some comments, 
but it necessary to point out that the no-flow 
boundary conditions need to update at the beginning 
of each iteration. Moreover, in the sweeping cycle, 
the old iteration value from level m must be 
temporarily stored to variable OldH so that it is 
possible to calculate the change between successive 
iterations, i.e.  c in Eq. (7).  In the program the new 
iteration value is immediately updated and therefore 
it is necessary to store only one H-matrix in the 
computer program.  
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     The results of the computer program are shown in 
Table 3 for two  values of the relaxation parameter 

: Gauss-Seidel results for  =1.0 and results for 

SOR-method when  =1.7.   The total number of 
iterations needed in the SOR-method is 37 compared 
with 114 needed in the Gauss-Seidel-method.  

Gauss-Seidel method  ( =1.0)
Solution:
Number of iterations =     114   Omega=  1.00   Max.error=  9.87006E-04
  50.00  50.50  51.00  51.50  52.00  52.50  53.00  53.50  54.00  54.50  55.00
  50.79  50.97  51.29  51.67  52.08  52.49  52.91  53.32  53.69  54.01  54.19
  51.22  51.31  51.53  51.81  52.14  52.49  52.83  53.16  53.45  53.66  53.75
  51.47  51.53  51.69  51.92  52.19  52.48  52.78  53.05  53.28  53.43  53.49
  51.61  51.65  51.78  51.98  52.22  52.48  52.74  52.98  53.18  53.31  53.35
  51.65  51.69  51.81  52.00  52.23  52.48  52.73  52.96  53.14  53.27  53.31

SOR-method ( =1.7)
Solution:
Number of iterations =      37   Omega=  1.70   Max.error=  9.82048E-04
  50.00  50.50  51.00  51.50  52.00  52.50  53.00  53.50  54.00  54.50  55.00
  50.80  50.98  51.30  51.68  52.08  52.50  52.92  53.32  53.70  54.02  54.20
  51.23  51.32  51.54  51.82  52.15  52.50  52.84  53.17  53.46  53.67  53.76
  51.49  51.55  51.70  51.93  52.20  52.50  52.79  53.06  53.29  53.45  53.51
  51.62  51.67  51.80  52.00  52.24  52.50  52.76  53.00  53.19  53.32  53.37
  51.66  51.71  51.83  52.02  52.25  52.50  52.75  52.97  53.16  53.28  53.33

Table 3 Output of the steady-state groundwater flow 
system shown if Fig. 1.  Comparison of results 
obtained by using Gauss-Seidel-and and SOR-

methods.  Computations carried out using the Pascal 
program given in Fig. 1.

     The total number of iterations needed in the SOR-
method is heavily dependent on the relaxation 

parameter  as indicated by the results of Table 4.  In 

this case there is an optimum value for opt. If too 

high value for relaxation parameter is used ( =1.9 
in our example), the convergence is not attained at 
all, which implies that extrapolating too much can 
lead to instability.

  Number of iterations
1.00 114
1.10   99
1.20   86
1.30   75
1.40   64
1.50   55
1.60   46
1.70   37
1.75   35
1.80   43
1.90 no convergence

Table 4 Total number of iterations needed as a 

function of relaxation parameter  in solving the 
steady-state groundwater flow system described in 

Fig. 1.
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