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Abstract: This paper presents a study of the dual 
reciprocity boundary element method (DRBEM) for the 
laminar heat convection problem between two coaxial 
cylinders with constant heat flux boundary condition. 
DRBEM is one of the most successful techniques used to 
transform the domain integrals arising from the 
nonhomogeneous term of the Poisson equation into 
equivalent boundary only integrals.  
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1. INTRODUCTION  
 
Among the various numerical methods, the 

boundary element method (BEM) becomes one of the 
favorite analysis tools ever since its introduction to 
the solution of heat transfer problems. Its advantage 
over the finite difference or the finite element 
methods comes from the fact that instead of full 
domain discretization, only the boundary is 
discretized into elements and internal point position 
can be freely defined. Therefore the quantity of data 
necessary to solve the problems can be greatly 
reduced [2]. 

Until recent years the main area of the BEM 
application has been limited to the conduction heat 
transfer problems among different heat transfer 
modes and therefore, with various research efforts, 
BEM for the solution of heat conduction direct or 
inverse problem is now well established [3]. However 
BEM study for the application of heat convection 
problems can be considered as insufficient and in still 
developing stage. Since the convection effects are of 
considerable importance in many heat transfer 
phenomena, they need much more research focus. 
The main difficulties of the BEM application to such 
problems are due to the facts that the fundamental 
solutions are only available for the few governing 
equation types and, except Laplace equation, 
additional domain discretization is required to 
account source type domain integral terms.  

The dual reciprocity boundary element method 
(DRBEM) which was introduced by Nardini and 
Brebbia [5] is thus far the most successful technique 
for dealing with above mentioned lack of  

 
fundamental solution types and domain integral 
problems.  

 
2. FORMULATION OF THE PROBLEM   
 
Consider an incompressible Newtonian fluid 

flow in a concentric annular tube as shown in 
Figure 1. In the system to be analyzed, z coordinate 
represents the axial direction and x–y coordinates 
are attached to the cross–sectional surface. The 
inner and outer cylinder radii are taken as Ri and 
Ro.  

 
Fig. 1 – Geometry of the concentric annular tube 

 
For the fully developed steady laminar flow 

with constant transport properties and negligible 
body forces, Navier–Stokes equation becomes 
simple pressure driven Poiseuille flow equation. 
Since the flow is fully developed, axial flow 
velocity is a function of only x–y coordinates, and 
axial pressure gradient is constant. In the energy 
equation, the viscous dissipation and axial heat 
conduction effects are neglected. Therefore the 
governing equation can be expressed in the form of 
a Poisson equation as follows: 

– momentum equation: 
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 – energy equation: 
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in which: w is the axial flow velocity;  – 
coefficient of viscosity; p – pressure; T – temperature; 
a=/c – thermal diffusivity. 

For the thermally fully developed flow with 
constant heat flux boundary condition, equation (2) 
can be rewritten by using the mixed mean 
temperature Tm [4] as: 
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where T/z=dTm/dz=const. from the given 

conditions. The boundary conditions associated with 
the equations (1) and (3) are: 

 

oat0,at0 RRwRRw i              (4) 
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where subscripts “i” and “o” represent for the 

inner and outer surfaces. 
For the solution of temperatures, velocity from 

equation (1) is obtained first and then equation (3) 
can be solved in sequence since the assumption of 
constant viscosity uncoupled the momentum and 
energy equations. 

 
3. DUAL RCIPROCITY BOUNDARY 

ELEMENT EQUATION  
 
For the BEM solution, equations (1) and (3) 

subject to equations (4) and (5) can be generalized as 
the following type of Poisson equation [6]: 
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and to represent convective heat transfer 
problems: 
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where: 1+2= is the total boundary of solution 

domain ; n – normal to the boundary; u  and q  – 

specified values at each boundary. 

Applying the usual boundary element 
technique to equation (6), an integral equation can 
be deduced as follows: 
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where the constant ci depends on the geometry 
at point i as: 
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where  is the angle between the tangent to  
on either side of point i. 

The key method of DRM is to take the domain 
integral of equation (10) to the boundary and 
remove the needs of complicated domain 
discretization. To accomplish this idea, the source 
term b(x, y) is expanded as its values at each node j 
and a set of interpolating functions fj are used as 
[6]: 
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where: j is a set of initially unknown 
coefficients; N+L – the number of boundary nodes 
plus internal points. 

If the function ju can be found such that: 

jj fu  2                                                  (13) 

then the domain integral can be transferred to 
the boundary. 

Substituting equation (13) into equation (12), 
and applying integration by parts twice for the 
domain integral term of equation (10) leads to:  
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For the two dimensional domain of interest in 
this study, u, q and û , q̂ can be derived as: 
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where r stands for the distance from a source 

point i or a DRM collocation point j to a field point 
(x, y). As for the equation (13), a radial basis 
function f =1+r is chosen as an interpolating 
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function which was shown to be generally sufficient. 
In the numerical solution of the integral equation 

(14), u, q, û and q̂  in the integrals are modelled 

using the linear interpolation functions as: 
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Here the first subscript of Eq. (21) and (22) refers 

to the specific position of the point where the flow 
velocity or temperature is evaluated; the second 
subscript refers to the boundary element over which 
the contour integral is carried out. The superscript 1 
and 2 designate the linear interpolation function 1 
and 2 respectively, with which the u and q 
functions are weighted in the integrals in equation 
(17) through (20). 

For the boundary 21   discretized into N 

elements, integral terms in equation (14) can be 
rewritten as: 
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where 22
0 iNi hh   and 22

0 iNi gg  . Introducing 

equation (23) and (24) into equation (14) and 
manipulating results yields a dual reciprocity 
boundary element equation as:  

 















 







 

N

k
kjikkj

N

k
ikiji

LN

j
j

N

k

N

k
kikkikii

qGuHuc

qGuHuc

111

1 1

ˆˆˆ
     

(25) 
 
4. NUMERICAL  SOLUTION  
 
For the computer implementation of numerical 

solution, equation (25) can now be written in a 
matrix form as: 

 αQGUHGQHU )ˆˆ(                       (26) 

 
where H and G are matrices of their elements 

being Hik and Gik, with ci being incoroperated into 
the principal diagonal element, respectively. U, Q 
and their terms with hat of equation (26) 
correspond to vectors of uk, qk and matrices with j 
the column vectors of hat ukj, qkj. It is noted that 
vector  of unknown coefficients j can be 
evaluated from equation (12) with chosen 
interpolating function fj and the function b(x, y) of 
governing equation. Therefore introducing the 
boundary conditions into the nodes of uk and qk 
vectors and rearranging by taking known quantities 
to the right hand side and unknowns to the left 
hand side leads to a set of simultaneous linear 
equations of the form: 
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Consider the geometry illustrated in Figure 2. 

For the sake of simplification, the surface 
temperatures of two cylinders are assumed to be 
equal. Thus, the solution satisfies the following 
boundary conditions:  
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For the numerical test case, following 

numerical values in equations (1) and (3) are taken 
from the paper [8] where the spectral collocation 
method is used for the exccentric annuli heat 
convection analysis: Ro=0.055 m, Ri=0.030 m, 
(1/)dp/dz = –836 m–1s–1, a=1.341810–9 m2/s, 
dTm/dz=0.47 C/m. The numerical model 
develobed above, based on DRBEM, was 
implemented by the author in programs 
DISCRMM, DRMMVTP and DRMMPTE 
elaborated in FORTRAN programming language, 
for IBM–PC compatible computers.  

  
5. RESULTS AND DISSCUTION  
 
In order to confirm the accuracy of the dual 

reciprocity boundary element method for the 
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present heat convection problem, each boundary of 
outer and inner surface is equally discretized as 36, 
48, 60, 72 and 84 elements respectively. The nodes 
on every boundary and the unternal points of the 
analysis domain are located as shown in Figure 2. 
Therefore total number of internal points used in the 
analysis  are: 90, 120, 150, 180 and 210 for each 36, 
48, 60, 72 and 84 boundary element cases 
respectively. 

 

 
Fig. 2 – Boundary element nodes and internal 

points for the system to be analyze 
 

Table 1. DRBEM results with exact solutions for the boundary and internal locations in flow velocity 
analysis  

Solution 
Variable 

Radial 
location 
R [m] 

DRBEM solution 
(number of boundary elements case) Exact 

solution 
36 48 60 72 84 

w/n 0.055 9.570611 9.61436 9.632446 9.64673 9.64945 9.66790 
w/n 0.030 11.9614 11.9317 11.91098 11.9023 11.90070 11.8838
W 0.0342 0.040336 0.039937 0.039755 0.039656 0.039614 0.039413 
W 0.0383 0.061518 0.061112 0.060926 0.060825 0.060760 0.060591 
W 0.0425 0.066727 0.066320 0.066133 0.066030 0.065973 0.065803 
W 0.0466 0.057611 0.057196 0.057006 0.056908 0.056853 0.056682 
W 0.0508 0.035084 0.034883 0.034733 0.034638 0.034606 0.034439 

 
Table 2. DRBEM results with exact solutions for the boundary and internal locations in temperature 

analysis (T*=Tw–T) 

Solution 
variable 

Radial 
location 
R [m] 

DRBEM solution 
(number of boundary elements case)

Exact 
solution 

36 48 60 72 84 
T*/n 0.055 172056.38 170824.22 171362.75 171600.75 171628.56 170484.2 
T*/n 0.030 233420.45 229217.02 230340.65 230698.70 230771.22 229506.9 
T* 0.0342 804.26 828.59 847.40 853.78 855.04 858.72 
T* 0.0383 1268.86 1298.52 1311.65 1315.86 1317.26 1320.13 
T* 0.0425 1383.48 1413.28 1426.46 1429.68 1431.26 1433.69 
T* 0.0466 1180.68 1209.26 1224.48 1230.46 1231.92 1234.96 

 
 
To obtain the axial flow velocity distribution 

w(x,y), equation (1) is solved first. Their results for 
the boundary and internal nodes are shown in Table 
1. Here the normal derivative of velocity w at the 
boundary is listed as well, and all the numerical 
solutions are compared with the exact solutions [4] 
for their accuracy.  Considering relation (17.8) from 
the bibliographic reference[17] proposes for the 
analytical calculus of velocity  w the equation: 
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Figures 3 and 4 show the convergence plot of 

DRBEM velocity and its normal derivative 
solutions as the number of boundary elements and 
internal points increase. DRBEM solutions are in 
close agreement with the exact solutions and 
relative errors are within 2.3% for the above 36 
element cases. 
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Fig. 3 Accuracy test for the velocity solution at the 
selected internal points. 

 

 
 

Fig. 4  Accuracy test for the normal derivative of 
velocity solution at the inner and outer boundaries. 

 
As noted in Figure 3, velocity solutions at 

location of R=0.0508 m and R=0.0342 m are less 
accurate than the others and, in between, R=0.0342 
point gives more inaccurate solution than R=0.0508. 
And for the normal derivatives of velocity at 
boundary R=0.055 m is less accurate than R=0.030 m 
as shown in Figure 4. These results are due to the 
facts that the outer boundary element size is larger 
than the inner boundary element size and distribution 
of internal points is getting sparse to the outward 
direction, whereas rapid change of velocity occurs at 
inner and outer boundary sides as illustrated in 
Figures 2 and 5. Therefore solution’s error magnitude 
regarding to the radial location is closely related to 
both the physical and the mathematical aspects and 
nevertheless overall solution accuracy is shown to be 
fairly acceptable. Thus, 36 element solution case 
shows maximum 2.34% error at radial position 
R=0.0342 and later results in accurate temperature 
solution. 

Then these DRM velocity solutions are, in turn, 
used in the energy equation (3) to solve for the 

temperature distribution. Table 2 shows the results, 
and it is found that DRM solutions are in excellent 
agreement with exact solutions and relative errors 
are within 5% for the above 36 element cases (Fig. 
6, 7 and 8). Although the converging trend in 
Figure 7 is not monotonic and radial location effect 
about error magnitude is not exactly following the 
previously discussed velocity solution case, 
solution trends can be considered as 
indistinguishable within 1% relative error. 

 
Fig. 5 Velocity profile of exact solution  compared 

with DRBEM results. 
 

 
Fig. 6 – Accuracy test for the temperature solution  

at  the selected internal points. 
 

 
Fig. 7 Accuracy test for the normal derivative of  

temperature solution at the inner and outer 
boundaries. 
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Fig. 8 – Temperature profile T* of exact solution           
compared with DRMEM results. 

 
As a final note, all the element cases turns out to 

be adequate for the solution of this problem. Errors of 
the velocity and the temperature solution are 
acceptable. 

 
6. CONCLUSIOS  
 
A dual reciprocity boundary element method has 

been presented for the solution of laminar heat 
convection problem in a concentric annulus imposed 
with constant heat flux. DRBEM matrix is formulated 
to perform the numerical implementation, and five 
cases of boundary element discretization are tested 
with the corresponding number of internal points. 
Five radial locations are selected to obtain the 
velocity and temperature solutions. Test results are 
shown to be in excellent agreement with exact 
solutions for the above 36 element case.  
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