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Abstract:  This paper presents the modality to solve heat 

conduction steady-state and transient regime in the case 

of two-dimensional problems, using the Finite Element 

Method. Firstly the paper develops the analytical model 

with linear triangular elements in case of thermal 

conduction in steady-state and transient regimes, and 

then presents the numerical examples with 

corresponding results. 
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1. INTRODUCTION 

 

Transmission of heat is a natural process of 

energy transfer from bodies with higher  temperature 

to those with lower temperature and furtherrnore 

inside a body from areas with higher temperatures to 

those of a lower temperature. Heat is transmitted by 

conduction , convection and radiation. Thermal 

conduction takes place in three-dimensional bodies 

and their  resulting thermal fields which manifest 

themselves in a certain way after the coordinate axes. 

There are such bodies as plain walls, bars, wires for 

which two-dimensional and one-dimensional models 

are used to analyze thermal fields. 

Development of electronic computers has 

allowed solving various problems with imposed 

conditions, if one appeals to different numerical 

methods developed in modern literature. From this 

point of view thermal conduction is a wholesome 

domain of applicability of the Finite  Element 

Method, which constitutes the model in full for the 

studied phenomenon. 

 

2. DIFFERENTIAL EQUATION OF HEAT 

CONDUCTION 

 

 Temperature   in a body depends on spatial 

coordinates zyx ,,  and  time  t  as such: 

  

                   ),,,( tzyxf                        (1) 

If 0




t


,  it means that we have a steady 

temperature field and if 0




t


 it is a transient 

temperature field. Depending on the number of 

coordinates by which the temperature varies, the field 

is called one-dimensional, two-dimensional or three-

dimensional. The set of points within a body  with 

constant temperature forms an isothermal surface and 

in the case of two-dimensional fields an isothermal 

curve occurs. The amount of heat that passes through 

a surface, measured by a time unit, is called heat flow 

and is defined by the following: 

 

    dSqQ
S

                                (2) 

 

in which q is the heat flow or unitary heat flow which 

according to Fourier’s law is expressed as such [12]: 
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In equation (3)   was used to note the thermal 

conductivity coefficient and n notes the normal axis 

to surface S .  Variation of temperature in time and 

space, inside the body or a fluid environment, is given 

by Fourier’s equation [12]:   
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, in which:    - specific body mass; pc - specific 

heat; vq - unitary volumetric heat flow; x ,  y , z  

- thermal coductivity coefficients according to axes 

x,y,z.  

 For solving equation (4) we must impose: a) 

- initial condition for transient regimes and b) - spatial 

conditions [7]. 

a) The time limit conditions establish the 

temperature distribution at the beginning of the 

process, as such: 

 

),,()0,,,( zyxftzyxf         (5) 

 

 b1) The primary space limit conditions 

specify that the temperature is imposed on S  

surface, as such: 
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 b2)  Second type limit conditions mention 

that the thermal flow is imposed on the body’s 

surface qS thus: 
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in which , zyx nnn ,,  are notations for the directing  

cosines of the normal to the surface.  

 b3) Third type spatial limit conditions state 

that heat transfer occurs through convection on 

surface S  with the known parameters, as such: 
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in   which:   - is the convection cofficient from 

surface S to the environment or viceversa and E  - 

is the outside temperature. 

 
Fig. Space limit conditions 

3. MATHEMATICAL MODEL WITH       

FINITE ELEMENTS IN SOLVING TWO-   

DIMENSIONAL CONDUCTIVE HEAT     

TRANSFER IN A    STEADY–STATE REGIME 

 

The paper addresses the issue of flat               

two-dimensional problems which imply that the 

temperature does not vary in the direction of the 

z axis, thus 0




z


. We will consider the steady 

heat transfer which means 0




t


. If we customize 

the differential equation (4) and the limit boundary 

conditions (5), (6), (7) for two-dimensional problems 

and we use variation formula to obtain analogous 

finite element equations, we get the expression of 

functional J [6], [7], [10]. 
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 Dividing the analysis domain into m finite 

elements, leads to summing every finite element        

of functional eJ , thus having: 
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where index „e” refers to a random finite element. 

Temperature e  in any point of the finite element is 

expressed on the basis of nodal temperatures and the 

form functions using [8],[16]: 
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where n  is the number of nodes in the finite element. 



  

41 

 In the case of functional J , we have the 

partial derivatives of temperature e  in relation to 

variables x  and y which can be written under  

matrix form: 
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  Matrix ][B  contains form functions’ 

derivatives in relation to coordinates x and y .  If we 

note the matrix of thermal conductivity coefficients 

witth: 
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and  taking into account relations:     
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and also that dAhdV   and dlhdV  , where h  

is the finite element’s thickness ; dA - differential 

area element and dl - differential length element, we 

obtain the formula for minimizing functional eJ : 
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 We consider the finite element’s thickness 

h as constant and equal to the unit used in plain 

problems. Under condensed form relation (15) 

becomes: 
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 In equation (16) matrix ][k of the finite 

element in which occur physical processes of heat 

transfer through conductivity inside the element and 

through convection on the boundary has the following 

expression [7],[3]: 
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and 
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, is the heat load vector. If we take into account (10), 

(15), (16) we obtain the global equations system: 

 

   FK                                (19) 

 

in which  



m

e

kK
1

][][  is the global conuctivity 

matrix, 



m

e

fF
1

}{}{ - global heat load vector,  

}{ - global temperature vector. 

 

 
     Figure 2. The triangular finite element with heat  

                  exchange by thermal flow and convection.  

 

4. EXPRESSION OF CONDUCTIVITY MATRIX 

AND THERMAL LOAD VECTOR ON THE 

TRIANGULAR FINITE ELEMENT 

 

 In the case of a triangular finite element with 

three nodes  kji ,,  , temperature e  in any point of 
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the element is written on the basis of nodal values and 

form functions: 

 

kkjjiie NNN                       (20)  

 

 Matrix ][ 1k and ][ 2k , in conformity with 

[7] have the expression: 

 

 

 









































kkykkxjky

jkxikyikx

kjykjxjjy

jjxijyijx

kiykixjiy

jixiiyiix

e

ccbbcc

bbccbb

ccbbcc

bbccbb

ccbbcc

bbccbb

A

h
k













4
1      (21) 

 

 

  dl

NNNNNN

NNNNNN

NNNNNN

hk

el

kkjkik

kjjjij

kijiii




















3

2       (22) 

 

 If we introduce length coordinates 

[7],[8],[15] and convection exchange occurs on  side  

jk , ij , ki  and we take into account same index 

products j or k , i or j , k or i , respectively 

j and k , i and j , k and i all different, we obtain: 
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Considering internal sources’ flow as 

constant on the finite element and the heat exchange 

through imposed thermal flow through side ki of 

length eki ll 2  and through convection on side 

jk of length ejk ll 3 , we have as a result[7]: 
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5. FINITE ELEMENT MODEL IN TRANSIENT   

REGIME  

 

 Taking into account the heat transfer 

equation (4) and the functional (9), we notice that for 

heat transfer in a transient regime, instead of 

dVq
V

V   from the steady  regime, we also have 

the expression: 

 

 

 






















V V

pV

V

pV

dV
t

cdVq

dV
t

cq










             (25) 

 

 This imposes a new term to consider 


eJ   for 

functional eJ   on the finite element thus: 
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which  needs minimizing. On the finite element we 

obtain the following linear differential equation 

system in relation to time: 
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in which the calorific capacity matrix  C  for the 

triangular finite element has the expression: 
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 In order to integrate in time a differential 

equation system (27) and to obtain the temperatures 
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field, we appeal to the weighted residuals method and 

then we have a reccurence formula: 
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 The reccurence relation (29) allows 

temperatures 
je

 determination in the finite 

element’s nodes at moment j , in relation to 

temperatures 
je

 at previous moment i . 
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we have the finite element equation written in the 

form  of : 

  

     
tet fk                          (31) 

 

 

 The system of equations (31) is determined 

for all finite elements and then is assembled for 

obtaining the global system which allows determining 

temperatures in global nodes at time step j  in relation 

to previous moment i . 

 

6. NUMERICAL RESULTS FOR HEAT 

TRANSFER IN STEADY-STATE REGIME   

 

 We consider the analysis domain a rectangle 

having dimensions cm60  and cm40  and is 

divided into 48 triangular finite elements and 35 

nodes.This together with boundary conditions are 

presented in figure 3. Numerical computing is done 

with the following values: 
2/2326 mWqx   and 

2/930 mWqy  - unitary thermal flow in relation 

to axis coordinates; CmWyx

2/23 - 

convection coefficients and CyExE

10                     

is outside temperature value, CmWx

2/12 , 

CmWy

2/6  conductivity coefficients. 

Numerical results are obtained on the basis of 

program TCSTAMEF in FORTRAN programming 

language.  

 
Figure 3.Analysis domain and boundary conditions. 

 

 

   Table 1.Nodes coordinates and temperature values   
Nod x 

cm 
 y 
cm 

θ  

°C 

Nod x  
cm 

y  
cm 

θ  
°C 

1 0 0 46.96 19 30 30 
133.
05 

2 0 10 61.98 20 30 40 
149.

25 

3 0 20 75.46 21 40 0 
82.4

3 

4 0 30 88.31 22 40 10 
108.
24 

5 0 40 102.16 23 40 20 
130.

17 

6 10 0 55.10 24 40 30 
149.

08 

7 10 10 72.28 25 40 40 
165.
64 

8 10 20 88.14 26 50 0 
94.6

5 

9 10 30 103.10 27 50 10 
123.

35 

10 10 40 118.11 28 50 20 
146.
68 

11 20 0 63.38 29 50 30 
166.

29 

12 20 10 83.22 30 50 40 
183.

07 

13 20 20 101.29 31 60 0 
110.
87 

14 20 30 117.86 32 60 10 
141.

14 

15 20 40 133.58 33 60 20 
165.
06 

16 30 0 72.30 34 60 30 
184.

92 

17 30 10 95.07 35 60 40 
201.

78 

18 30 20 115.17 

    

 

7. NUMERICAL RESULTS IN CASE OF 

CONDUCTIVE HEAT TRANSFER IN 

TRANSIENT REGIME 

 

 For numerically solving the temperature field 

in the case of heat transfer in transient regime we will 

use the analysis domain presented in fig, 4. The body 

has internal heat sources uniformly distributed and is 

adiabatic insulated towards the environment.      
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Initial temperature is C100  ; density value   

is
3/7650 mKg ; CKgJc p

/6.492 - 

specific heat; unitary volumetric heat flow,  
35 /10652.4 mWqv  ;  conductivity coefficient  

CmWyx

/5.46  .  We will choose a time 

interval st 36  and 10 time steps. Numerical 

results were obtained with TCIRTMEF computer 

program. 

 Due to the material's homogenity, the 

uniform distributions of heat sources and adiabatic 

insulation of the body, at a given time step we obtain 

the same temperature in all the nodes. The 

temperature values corresponding to time steps are 

presented in table 2, and temperature graph in relation 

to time is given fig.5 

 
Figure 4. Analysis domain. 

 

 Table 2.Temperature   values at time t  

 C  14.4 18.8 23.3 27.7 32.2 

 st  36 72 108 144 180 

 C  36.6 41.1 45.5 49,9 54.4 

 st  216 252 288 324 360 

  

 
 Figure5. Temperature variation with time 

 

 

 

 

 

 

 

8. CONCLUSIONS 

 

 Numerical modelling with finite elements 

represents an effective mathematical instrument for 

the accurately determining conductive thermal fields. 

 With the help of program TCSTAMEF we 

determined temperatures in steady regime of thermal 

conductivity with imposed boundary conditions 

which are: thermal flow and convection heat transfer. 

We observe that in table number one the maxim 

temperature equal 201.78 °C it is nod forthy and the 

minim temperature equal 46.96 °C it is placed in node 

one. 

 With the help of program TCIRTMEF we 

calculated the temperatures from the analysis domain 

at every time step, with an imposed initial condition. 

From fig.5 one notices that the temperature increases 

linearly with time.  
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