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Abstract: The modelling of open channel flows as 1D 

scheme is usually performed by advanced numerical 

models developed in the last years, in which an essential 

problem is the approach of the shear stress at the 

channel bed. Starting from fundamental equations of the 

hydrodynamics, in the paper, the basic equation for 1D 

open channel flow will be obtained and discussed 

concerning the approaches of the term which contain the 

shear stress for both literature approach and numerical 

models. 
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1. INTRODUCTION 

 

In the modelling of the flow in the open channels 

the theory is based on the fundamental equations 

developed for a current tube in the 1 D case, with the 

mean velocities on cross sections. Based on these 

equations, the later development has a general 

character in the sense that the term referring to shear 

stress at the rigid walls of the current tube is not 

specified. For this reason there are significant 

differences to appreciate the term representing shear 

stress by different authors. These differences are 

encountered even in the advanced developed 

numerical models on all over the world, for example 

HEC-RAS or Mike 11. 

The paper aims a discussion about the term 

referring the shear stress at the rigid wall of the 

current tube in the open channel flow by comparing 

approaches from the specialty literature used 

especially in the advanced numerical models existing 

on all over the world. 

 
2. THE DYNAMICS EQUATION FOR 

STREAM TUBE 

 

Technically, the pipe flow and the open channel 

flow are stream tubes. The hydrodynamic equation for 

such a stream tube can be obtained from the basic 

equation of the hydrodynamics for a control volume.  

This equation in its turn is obtained on the base of 

the linear momentum balance (dynamics equation) for 

a moving fluid body and shows that the time rate of 

change of the total linear momentum of a fluid body 

which at the time t occupied the spatial volume Vt is 

equal to the resultant force acting on the considered 

body [1], [2]: 

 

t t tV V S

d
vdv f dv t dS

dt
        (1) 

 

where ρ is the water density, f


is the intensity of the 

mass forces (e.g. gravity forces f g , v( r ,t )is the 

fluid velocity in the spatial point r( t ) , t  is the 

external stress vector (i.e. surface traction force 

per unit area which acts on the boundary St) and 

Vt is the moving fluid body as material system which 

at the time t occupied the space volume Vt limited by 

his boundary surface St. 

Using the Reynolds Transport Theorem i.e. the 

derivation under the integral sign over Vt from (1) the 

following dynamic equation will be obtained [1], [2]: 

 

t t t tV S V S

( v)dV v ndS fdV tdS
t


      

      (2) 

 

n  is the outward unit-normal vector on the boundary 

surface St.  

In the applied hydrodynamics like open 

channel flow it is quiet useful to use specific spatial 

region called control volume denoted VC bounded 

with its SC called control surface. If the control 

volume VC which coincides at the time t with the 

space volume Vt (i.e. VC ≡ Vt ) the dynamics equation 

(2) maintain their mathematical form [1], [2]: 

  

C C C C

fa

V S V S

vdV v ndS fdV tdS
t


      

          (3) 

 

In this equation 
fa

v  represents the absolute velocity of 

the fluid crossing the boundary surface Sc. 

The dynamics equation (3) can be extended for a 

deformable spatial control volume VCt which at the 

time t is occupied from the moving fluid (i.e.VCt ≡ Vt ) 
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and whose boundary SCt (i.e. the control surface) 

moves at a given speed 
CS

v which can differed from 

the fluid velocity
fa

v : 

 

Ct Ct Ct Ct

r

V S V S

vdV v ndS fdV tdS
t


      

       (4) 

 

where 
fr

v is the elative velocity of the fluid crossing 

the moving boundary SCt of the deformable control 

volume VCt.: 

 

fr fa Sc
v v v         (5) 

 

In this case in equation (4), different from equation 

(3): the partial derivative with respect to time in the 

first term (

t




) refers to the time dependence through  

the velocity v(r, t)  and through the moving control 

volume 
Ct

V ( t )  without considering the indirect 

variation respect to time t through r( t )  via 

velocity v(r(t), t) , like it the total derivative 
d

( )
dt

 

would considered.. In [3] is given the same form 

where the first term, incorrect, as material (or total) 

derivative is considered. One can prove that this form 

leads in some case to errors. Such a case is that of the 

basic equations (Sant-Venant) for open channel flow. 

 

To obtain the dynamic equation for open channel 

flow the general equation the momentum equation (4) 

will be applied for a stream tube portion which 

schematized the open channel or river flow (Fig. 1). 

As control volume an elementary stream tube portion 

in the vicinity of a current cross section will be 

considered which is delimited by flux surfaces Al and 

Al+dl (i.e. a stream tube portion having an elementary 

length of dl). 
 

 

 

Figure1.Stream tube scheme for open channel flow 

 

The equation (4) will be integrated for the elementary 

control volume and projected on the stream tube axis   

obtaining by this way the so called Saint-Venant 

Equation: 

 

 

Σ

2

Σ Σ

P

Q Q p 1
gA z τ dP

t l A l g

      
      

      
  (6) 

 

 

 

Σ

2

Σ Σ

P

1 Q 1 Q p 1
z τ dP

gA t gA l A l g gA

      
      

      


 (6’) 

 

where β is the momentum coefficient: 

 

Σ

2

P

1 v
dA

A v

 
   

 
     (7) 

 

Usually in the praxis can be take β=1. 

 

Follow up remain to make explicit the integral 

from the right side of the equation (6) which represent 

the resistance effect of the wetted wall of the open 

channel or of the pipe determined by shear stress   

which for an arbitrary flow section is unknown. 

To obtain a global physical meaning of the 

resistance term, steady flow regime will be considered 

when 

 

Q
0

t





 and   

A
0

t





    (8) 

 

In this case under consideration of continuity 

equation (i.e. Q= vA=const.) the basic equation 

(6) can be written in the form: 

     

E
P

dP I
gA

1


  

     (9) 

 
 

where IE is the energy sloop which represent the 

hydraulic energy loss per unit length of the stream 

tube: 

 
2

E

v p
I z

l 2g g

 
   
  

    (10) 

 

 

The relation (9) represent for the practically use a very 

important connection between the shear stress   and 

the global hydraulic energy loss IE expressed. 

 

Through introduction the hydraulic radius defined as 

ratio between flow area and wetted perimeter 

 

hR
A

P

     (11) 

 

relation (9) can be expressed in an equivalent form 
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h E
P

E

dP R I
P

1

g 
  

     (12) 

 

The most important problem for the practically use of 

the basic equation (6) for modelling is the evaluation 

of the resistance term because the shear stress 

distribution along the stream tube wall is generally 

unknown. This aspect will be discussed in the next 

paragraph.   

  

3. EXPLANATIONS OF THE HYDRAULIC 

RESISTANCE TERM 

 

3.1 PIPES WITH CIRCULAR FLOW 

SECTION 

 

As mentioned above an important problem for the 

practically use of the basic equation (6) is the 

evaluation of the resistance term because the shear 

stress distribution   along the stream tube wall is 

generally unknown. As basis we consider the simplest 

case i.e. pipes with circular flow section because in 

this case the shear stress  is constant 0   . In 

this case from relation (12) we obtain the resistance 

term in an explicit form: 

 

Σ

0
Σ Σ h E

P

τ1
τ dP R I

gP g

 
   (13) 

 

  To approach the resistance term there are several 

empiric procedures which can be used. The most 

usually approach is the Chezy proposal only valid for 

quadratic turbulent flow regime: 

 
2

0

2C

τ v

g



      (14) 

 

with C the Chezy cofficient. From (13) and (14) we 

obtain the much known Chezy formula for on the 

flow cross section averaged velocity: 

 

h Ev C R I        (15) 

 

and the for the total discharge respectively: 

 

 h EQ Av AC R I         (16) 

     

The Chezy C coefficient usually is given after 

Manning-Strickler: 

 

1/6

h

1
C R

n
     (17) 

 

with n the Manning roughness coefficient. 

 

 Another approach is the Darcy-Weissbach 

proposal using a coefficient  which for circular pipe 

is expressed with the Colebrook-White formula [2]: 

 

  

e

1 2,71 k
2log  

3,71DR

 
      

 (18) 

 

where k is the wall roughness, D is the pipe diameter 

and Re the Reynolds number defined as 

  

e

vD
R  


      (19) 

 

where  is the kinematic viscosity coefficient. 

In opposite to the Chezy approach the Darcy 

approach is general valid for all flow regime. 

For quadratic turbulent flow regime can be use a 

simplified formula: 

 

1
2.03 

14.84 

sk
lg

Re

 
   

 
   (18’) 

 

The connection between the two coefficients is 

expressed in the following relation:  

 

 
2 8g

C  


      (20) 

 

For on the flow cross section averaged velocity 

can be expressed in term of Darcy coefficient as 

follow: 

h E

1
v   8g  R I  


    (21) 

 

3.2 OPEN CHANNEL FLOW (RIVERS, 

CHANNELS) 

 

In the case of open channels the shear stress   

is not more constant (Fig. 2) and so the integral 

expression of hydraulic resistance in the form of 

(13) is not more valid.  
 

 

x

yhx=
hmax

dP

P F

Distribution 

 

Figure 2. Share stress distribution in open channel 

flow 
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In this case the shear stress distribution  is 

unknown, no more constant, depending from the local 

depth y. To prove that we can apply the simplified 

basic equation of steady flow (12) for an elementary 

flow section considered in a current point x of the 

entire flow cross section (see Fig. 2 and Fig.3). 

 

dA

dP

h(x)=y

 
 

Figure 3. Elementary cross section 

 

Equation (12) applied to elementary section, by 

neglecting the lateral shear stress and taking into 

account that the hydraulic radius Rh=h(x), has the 

following expression: 

 

E
dP

E

(x)dP h(x)
1

I
gdP 

  
      (22) 

 

 

Along the elementary wetted perimeter 

dP  the shear stress   is practically constant so that 

integral in (21) can be performed. Consequently we 

obtain the friction stress distribution along flow cross 

section boundary: 

 

 Στ    E Eh x I
g

yI


    (23) 

 

Consequently the estimation of the global friction 

should be investigated. 

 

4. SHARE STRESS AND FRICTION TERM 

EVALUATION VARIANTS FOR OPEN 

CHANNEL FLOW 

 

4.1 SIMPLIFIED ESTIMATION AS UNIQUE 

FLOW CROSS SECTION 

 

The shear stress  is considered like in the case 

of the circular pipes, by introducing an averaged 

value over the cross section noted  . With this 

assumption the friction term in the basic equation can 

be expressed like at the pipe presented above 

resulting: 

 

 

Σ

Σ Σ Σ

τ1
τ 

P

dP P
 

    (24) 

This means that by accepting for  an average values  

0  remain valid the considerations discussed in 

paragraph 3.1, including both approach Chezy and 

Darcy and the formulas (15) – (20). 

It is quite common at modelling open channel 

flow to use the concept of conveyance K defined as: 
 

hK CA R       (25) 

 

With the conveyance the flow discharge Q can be 

expressed as: 

 

h E EQ CA R I K I        (26) 

 

with IE the energy slope. 

In this case of simplified approach for a 

structured/composed cross section represented in 

(Figure 7) the hydraulic radius is the ratio of the 

total area and total wetted perimeter of the flow 

section: 

 

 

1 2 3
h

1 2 3

A A A
R  

P P P

 


 
  (27) 

 

It will be shown in the next paragraph that this 

simplified approach can lead to huge errors in 

comparison with an approach which take into account 

different flow conditions in the channel and 

floodplain. 

 

A1

A2

A3

P1

P2

P3

Figure 4. Flow conditions in the certain composed 

flow area 

 

 

4.2 STRUCTURED FLOW CROSS-

SECTION  

 

In reality the flow area in not unique, generally 

being composed one (Fig.7). Taking into account the 

different flow condition in the main channel and both 

flood plane the following relationships can be set: 

 

ii i EQ  K I  ; i=1,2,3     (28) 

 

where Qi are the flow discharges in the main channel 

(i=2) and in the flood plans (i=1,3) (Fig.4), Ki are the 

conveyances and IEi are the energy sloops.  

Using the continuity equation the total flow discharge 

of the channel can be obtained: 

 

1 2 3Q  Q Q Q           (29) 
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With the realistic assumption that the energy slopes 

are equal in all parts of the flow cross sections i.e.: 

 

Ei EI  I ; i=1,2,3     (30) 

 

 
So it is useful to introduce an equivalent Conveyance

 K for the entire flow section A. Using the continuity 

equation we obtain the following equation for 

conveyances:  

  

1 2 3K  K K K      (31) 

with:  
 

i i i hi

i
hi

i

K  C A R  , 

A
R  ,   i=1,2,3

P




  (32) 

 

Consequently for the calculation of the total 

flow rate can be used the same formula (25) and 

(26) but don’t use the same hydraulic radius 

calculated with the formula (27) according to 
simplified approach. In this case the conveyance will 

be calculated form (31) which takes into account the 

different flow conditions in main channel and flood 

plans (Figure 7). Replacing in (31) the 

conveyances K and Ki is obtained the following 

formula for calculation of the hydraulics radius   

 
3

2/3 3/2e i
h hi

i 1 i

n A
R R   , 

A n

 
  
 

    (33) 

 

where ni are the Manning coefficients of the 

wetted perimeter of the sub cross sections and ne 

an equivalent Manning coefficients for the total 

wetted perimeter. If ni=n=constant 

 

 For the coefficient ne there are different formula 

in technical literature. The simplest is the 

weighted average on wetted perimeter: 
3

i i

i 1
e

n P

n  
P




     (34) 

In HECRAS software is used []: 

 
2/3

3
3/2

i i

i 1
e

n P

n  
P



 
 
 
 
 
 


  (35) 

 

In both cases if ni=n results ne=n. 

In order to show the differences between the two 

conceptions and is considered a relevant example 

of compound flow area (rectangular) shown in Figure 

5, for which the conveyance in both variants 

calculated and compared. 

h0



b b



 
Figure 5. Compound rectangular flow area 

 

In the unique flow area concept (variant I) 

applied formulas (25), (27) we obtain: 

 

 

5/3

0

2/3

1

1
I

b h
K

n 



   (36) 

 

 The terms containing multiplication of ε are 

neglected. 

By considering o compounded flow area (variant 

II) the following relationships will be obtained: 

 

 0 02

3

3

2 02

2

  

 









A b h bh

P b h

b

b

P

bA 









  (37) 

 

and for the conveyance in this variant is obtained: 

 

2 3

5/3

0

5/3 5/3

0 0

1 1

1

 

 



II

II

K K K

K bh
n n

b bh
n

 

   (38) 

 

It is observing than in two different variants of 

conception (unique flow area and compounded one 

respectively) the conveyance is not the same. The 

parameter αb represents the floodplain width  

(Figure 5.  

The ratio of both conveyances put in evidence the 

difference between these variants of modeling 

approaches: 

 

 
2/3

1
 
1

I

II

K

K


 
   (39) 

 

The numerical values are represented in Figure 6. 
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Figure 6. The graph of KI/KII % in terms of α 

parameter 

 

REMARKS: 

It can be observed that the unique flow area 

variant can be only used in the cases in which the 

value of KI/KII is being limited at an acceptable 

relative error of 3-5% percentage; 

It also can be mentioned that high error occurs 

only at the start of the floodplain inundation (small 

values of ε compared with water depth h0); 

If the value of ε rises at comparable values with 

water depth in the channel, the differences between KI 

and KII is reduced. 

  

CONCLUSIONS 

 

The friction term in the basic equation is usually 

approximated using the global conveyance for the 

flow cross section and the Manning-Chezy approach. 

The various programs in specialized literature use 

various methods for both Manning coefficient and for 

the hydraulic radius. As examples we mention the 

most used flood flow modeling software in rivers, like 

the commercial software HECRAS and MIKE 11. It 

can be seen that the modelling results are generally 

good, although a relatively coarse simplification was 

accepted. 

Problems can arise, however, in the case of flows 

with structured flow cross sections, when in addition 

to the main channel exist the left and right overbank 

flow. In this case the determination of total 

conveyance for the entire cross-section requires the 

subdivision into units for which the velocity is relative 

uniformly distributed is and so an averaging on these 

cross-section units is possible. 

In the paper it is shown that accepting a single 

section, which is a simple sum of the parts of 

subdivisions can lead to considerable errors especially 

for relatively small depths riverbed (early flooding 

major riverbed). For this reason it is recommended to 

determine of total conveyance using weighted 

averaging. 
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