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Abstract: This paper deals with the field of forms 

consisting of ruled surfaces or scrolls, widely used in the 

creation of contemporary architecture, emphasizing the 

class of non-developable surfaces. Various formal 

categories that can occur and methods of spatial 

composition and planar and axonometric representation 

are highlighted. 

Ruled surfaces have numerous applications in 

construction techniques, allowing simpler and easier 

ways of execution, in addition to easier building load 

calculation. In this respect, the paper illustrates some of 

the international successful achievements. 

In the end, the paper presents some teaching 

methods used for some practical applications of subjects 

taught in first years of study at the Faculty of 

Architecture in Timisoara, aiming to find interesting 

forms adapted to different functions. 

Keywords: architecture, spatial forms, geometry, 

generatrix, directrix 

 

1. INTRODUCTION 

 

Ruled surfaces are part of the formal language of 

architecture, found in different styles and 

contemporary trends, along with the polyhedral forms, 

thin curved shells, folded plates, helix forms, tensile 

and pneumatic membranes or various forms resulting 

transformations or combinations of the above. 

Spatial forms defined by ruled surfaces are 

usually volumes defined by moving a line (the 

generatrix) along three curves (the directrices). The 

shapes of these surfaces are infinite, easily understood 

from the geometry point of view and rational from the 

structural point of view, favoring a constructive 

relationship between the architect and the engineer.[1] 

Ruled surfaces are divided into two main 

categories: developable surfaces and non-developable  

surfaces (skew ruled surfaces). This paper focuses on  

the latter category due to their wide formal variety 

and, at the same time, to the fact that they are less 

studied and harder to be constructed because of 

technological or economic limitations. 

Therefore we will present, using orthogonal 

projections and axonometric images for a better 

understanding of their spatiality, seven formal 

categories resulted from different relational 

possibilities between the generatrix and the curves, 

the lines or the director surfaces, concluding with 

some examples of building structures that make use of 

scrolls and some applications of architect students in 

early years of study. 

The hyperboloids, paraboloids, conoids, 

cylindroids or surfaces defined by parametrical 

translation of the generatrix, are presented as form 

givers with an infinite variation of forms. Within each 

formal family there are presented both general 

variants that define a certain surface and particular 

ones, when one of the directrices grows to infinity and 

is replaced with a directrix plan. 

Thus, this paper highlights the diversity of forms 

using ruled surfaces, their classification by geometric 

and structural criteria, as well as methods for 

obtaining variations, both within the same formal 

category or combinations. 

Nature is an inexhaustible source of examples for 

architectural creation and these surfaces can be found 

in the form of crystals, minerals and rocks, especially 

in the way they metamorphose at high pressures and 

temperatures.[2] They also appear in the morphology 

of tree or plants leaves and in the infinite variety of 

living organisms in the terrestrial environment, 

especially marine, either in the general form or in 

certain parts, as shown in Fig.1. 
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2. NON-DEVELOPABLE RULED SURFACES 

 

They are also called skew surfaces and are 

characterized by the variation of the tangent plane, 

along with the changing position of the point of 

tangency on the generatrix. Hence, to every new 

position of the point on the generatrix there is a 

corresponding new plane tangent to the surface. 

The tangent plane at a point at infinity of a 

generatrix is called the asymptotic plane. The central 

plane of a generatrix is the tangent plane at a point of 

that generatrix (center point), perpendicular to the 

asymptotic plane corresponding to the same 

generatrix. In a central point, the corresponding 

tangent planes have an equal angle with respect to the 

central plane. The striction line of a surface is the 

locus of the central points of the generatrix of that 

surface. 

The variation of the tangent plane can be studied 

using Chasles's formula: tgθ = x / k, expressing that 

the trigonometric tangent of the angle formed by a 

tangent plane at a point with the central plane equals 

the quotient of the distance of this point to the central 

point (x) by the distribution parameter of the 

generatrix (k). [3] 

For an easier understanding and spatial 

representation, the generatrices of the ruled surfaces 

are generally found in a beam of vertical planes. 

Ruled non-developable surfaces generated by a 

line which is moving along:  

2.1 – Three curves as directrices represented in 

Fig. 2.1 and 2.2 by curves contained in vertical and 

horizontal planes. One can easily see that the position 

of two curves is random, but the third is a result of the 

intersection of the generatrices with the horizontal or 

vertical traces of the vertical planes that contain them. 

Each generatrix must move along all three 

directrices, thus the condition that one of them is to be 

obtained at the intersection of the plane that contains it 

with various particular planes that include the 

generatrices. 

2.2 – Two directrices and a core surface, which 

is a surface of revolution. In Fig.2.3 the core surface is 

a cylinder, one directrix curve is given and the other is 

spatially determined, as in the previous case, at the 

intersection of the vertical planes containing the 

generatrices (tangent to the core surface) with the 

plane that contains it. The position of the elements 

defining this surface is random, therefore there is an 

infinity of spatial variations.  

In the case where the core surface is a cone, the 

beam of vertical planes will be tangent to the cone, 

containing one of its generatrices and in the case 

where the core surface is a sphere, one of the directrix 

is grows to infinity and a director plane is formed, the 

generatrices tangent to the sphere being parallel to the 

latter. Due to lack of space, these two cases were not 

figured. 

2.3 – Two directrices and is parallel to the 

generatrices of a director cone 

In Fig. 2.4 the directrix curves are the sections of 

the cone parallel to the director cone, hence conical, 

and the generatrices are obtained by sectioning the 

same cone by planes containing its vertex. The 

director cone provides the certitude that the 

generatrices of the ruled surface are moving along the 

directrix curves, while under certain conditions it may 

be transformed into a director plane. 
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2.4 – Two curves and a rectilinear line as 

directrices, when the surface is called a cylindroid. 

In the case where the directrix is at a finite 

distance we have the case of a general cylindroid, 

while when it is at infinity, we have the cylindroid 

with a director plane. [4] 

Therefore, in Fig. 2.5 we have the representation 

of a general cylindroid, the generatrices are moving 

along a directrix curve C1 situated in the vertical 

plane, another curve C2 situated in the horizontal 

plane and finally, a directrix line D situated in the 

profile plane of reference. In order to represent the 

generatices moving along the three directrices, a 

fascicle of guiding intersecting vertical planes is used. 

One directrix curves results from the intersection of 

these generators ruling on the other directrices with 

the traces of the vertical planes containing them. 

Likewise, in Fig. 2.6 we represented a cylindroid 

with a director plane parallel to the profile plane of 

reference, since the directrix line D contained in this 

plan was at infinity. In this case, all generatrices are 

parallel to this plane. In the case of the general 

cylindroid, if the planes containing the generatrices 

are carried out through the directrix line, we are 

dealing with the axis cylindroid, widely used in 

architecture. Some of the frequent applications of 

cylindroids in the field of construction and 

architecture are: the cylindroid vault (which makes the 

transition between two different openings on the same 

wall thickness), the skew arch passage (often used at 

the intersection of two highways at different levels at 

an angle different from 900) or the roofing of 

freeforms, when directrix curves C1 and C2 

materialized in concrete or metal structural elements 

may present extremely interesting paths. [5] 

2.5 – A curve and two rectilinear lines as 

directrices, when the surface is called a conoid. 

When the two lines are to be found at a finite 

distance we have the case of the general conoid 

(Fig.2.7 with a directrix curve C situated in the 

horizontal plane and two rectilinear directrices D1 and 

D2 situated in vertical and profile planes of reference), 

while when one of the lines is at infinity, we talk 

about the conoid with a director plane (Fig. 2.8 with a 

director plane parallel to the profile plane of reference 

and all generators parallel to it). 

For its part, the conoid with a director plane may 

be straight, when the straight directrix is 

perpendicular to the plane (particular cases: the 

helicoid with a director plane, Plüker or Viviani) or 

oblique when it does not have this position (particular 

case - the Kuper conoid).[6] In every particular case 

bearing the name of the person who used it for the 

first time, the directrix elements have different shapes 

and spatial positions. In the alternative where the two 

rectilinear directrices are lines at infinity, the surface 

becomes a cylinder. 

In axonometry, one of the directrices is always 

resulting from the intersection of the generatrices 

moving along the other two with the traces of the 

fascicle of guiding planes. 

Among the numerous applications of conoids in 

architecture we can mention: the conoidal vault (with 

a vertical rectilinear line as a directrix, a frontal 

semicircle as the directrix curve and the horizontal 

plane of reference as the director plane), different thin 

curved shells roofs (with a sinusoidal directix, a 

frontal-horizontal line as directrix and the profile 

plane as the director plane), different shed roofs with 

clerestory windows (for lighting and ventilation). 
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2.5 – Three rectilinear lines at a finite distance  

as directrices, resulting a ruled surface called the 

general hyperboloid of one-sheet, when the directrices 

are at a finite distance.  

Thus, in fig.2.9 a general hyperboloid is 

represented, where directrix line D1 is the axis Oz, in 

order to simplify the axonometric construction, D2 

directrix is an end vertical line and line D3 is 

contained in the horizontal plane. For finding the 

generatrices, a fascicle of guiding vertical planes 

contains one of the directrices, in our case the line D1. 

The image in Fig. 2.11 represents another spatial 

variation of a general hyperboloid, where the directrix 

D1 is contained in the vertical plane, the directrix line 

D2 is horizontal and the directrix line D3 and the axis 

Oy are the same, while the fascicle of guiding vertical 

planes contains the directrix line D3. There are two 

ways in which a general hyperboloid can be 

determined or represented orthogonally. 

Thus, in fig.2.9 and 2.11 two variants are 

presented where the surfaces are determined by 

generatrices moving along three rectilinear lines D1, 

D2 and D3. Sectioning these surfaces with the planes 

of reference or with the faces of a circumscribed 

parallelepiped defines either rectilinear lines 

(directrices or generatrices) or hyperbolic segments, 

which are determined by points. 

The second way that allows viewing and defining 

the surface of a general hyperboloid is to border it by 

different sections (ellipses or hyperboles) drawn on 

the faces of a parallelepiped frame. 

 

2.6 - Three rectilinear lines, two at a finite 

distance and one at infinity as directrices, resulting a 

ruled surface called the hyperbolic paraboloid (HP). 
Thus, in Fig. 2.10 D2 and D3 directrices are taken 

from the previous figure, while D1 is at infinity and a 

director plane parallel to the vertical plane of 

reference is developed, so the surface becomes a 

hyperbolic paraboloid. In this case, all the generatrices 

are parallel to the director plane and determine equal 

rapports on the directrix lines. 

Likewise, in Fig. 2.12 directrices from Figure. 

2.11 are reproduced, but the directrix D3 is a line at 

infinity and a director plane parallel to the profile 

plane is developed, while the generatrices will be 

parallel to this plan. 

We should point out that the hyperbolic 

paraboloid is the only ruled surface with two director 

planes, being a double ruled surface and there are two 

families of rectilinear generatrices that can generate 

the same surface. Due to the ease of planar 

representation and spatial materializing of these 

surfaces, they represent the most frequently used 

applications of ruled surface in buildings.  

The roofing possibilities of planar outlines 

depends on: 

• the surface shape • the number of hyperbolic 

paraboloids (HP) and their combination (adjacency or 

intersection) • the load bearing outlines (on the sides 

or points). [7] 

A HP can be generated by a parabola that 

performs a translational motion, moving parallel to 

itself and moving along another parallel axis parabola 

in one point, but facing backwards. In this case the 

hyperbolic paraboloid surface is bounded by four 

parabolic arcs. 
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3. EXAMPLES 
 

In the following images we present some remarkable 

buildings using ruled surfaces (cylindroids in Fig. 3.1, Fig. 

3.2; conoids in Fig. 3.3, Fig. 5.4, hyperboloids in Fig. 3.5 

and paraboloids in Fig. 5.6) in order to illustrate the 

richeness of these categories of spatial forms designed to 

accommodate different types of architecture programs. [8] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1  Cylindroid - Santiago Calatrava 

        TGV train station, 

        Lyon– Satelas, France, 1989 – 1994 

Fig. 3.5 Hyperboloid - Oscar Niemeyer 

Maison de la Culture 

      Le Havre, Franţa, 1978 

Fig. 3.3 Conoid - Santiago Calatrava 

Art Museum 

Milwaukee,Wisconsin, USA, 2001 

Fig. 3.2 Cylindroid - Eero Saarinen 

        Yale Univeristy Ingalls Ice Arena  

        New Haven, Connecticut, 1959 

Fig. 3.4  Conoid - Hans Fackelman 

       Reformed Church 

       Orşova, România, 1975 

Fig. 3.6 Paraboloid - Le Corbusier 

        Philips Pavillion 

        Expo Bruxelles, 1956 
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4. CONCLUSIONS 

 

Based on the aforementioned facts, we are trying 

to convince that ruled surfaces, especially the non-

developable ones, offer infinite spatial variations and 

numerous practical applications in architecture and 

choosing them as a topic of study for this paper is 

motivated by the following facts: 

• they have a clearly defined geometry, which 

allows a coherent calculation of structural 

components, hence foreshadowing a good working 

relationship between the architect and the structural 

engineer; 

• recently remarkable achievements emerged in 

this formal category, supported by current technical 

development (eg. achievements of Santiago 

Calatrava); 

• in many cases their execution is easier than that 

of other formal categories, due to the rectilinear 

generatrices; 

• based on a teaching approach that shows students 

of architecture the architectural diversity derived from 

spatial relation of primary geometric elements (lines, 

surfaces, simple volumes). 

As practical applications of the Geometry of 

Architectural Forms subject taught in the first year of 

study and the Study of Forms, taught in the second 

year, the students seek to answer spatial variations 

requirements of different functionalities (eg exhibition 

buildings, sports centers, religion, etc.), making use of 

2D or 3D representation techniques: a series of 

drawings (in orthogonal projections or axonometry) 

and models. Once they’ve chosen the function for a 

given area bordered by a certain perimeter, they have 

to find a spatial answer to these types of ruled 

surfaces.  

The aim is both finding a graphical ways of 

highlighting the geometrical elements (directrices and 

generators) that define each surface, in drawings as 

well as in the built models, and also deciding the 

possibilities of placing the ruled surface on load-

bearing elements. Some of the second year of study 

students’ applications are presented on this page in 

Fig. 4.1, Fig. 4.2, Fig.  4.3, Fig. 4.4. 
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