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Abstract – This paper proposes a two-dimensional model 

of numerical and analitical simulation of the liquid flow 

which passes through a raking screen with scarce bars, 

encountered at the entrance of the penstock of a sewage 

treatment plant or in the approach pipes of a hydropower 

plant, respectively in channels.The numerical simulation is 

done for the purpose of obtaining the hydrodinamic field 

and also the velocity and pressure distributions on the 

cylindric bars of the screen: the investigated model is the 

numerical one adequate to the potential flow, that uses the 

Boundary Element Method (BEM) within which linear 

elements are utilized. It must be stated that the velocity 

and pressure distributions obtained with BEM are 

represented together with the ones computed with the 

Finit Element Method (FEM). 

Keywords: raking screen, potential flow, boundary, 

streamline, hydrodynamic field. 

 

 
1.  INTRODUCTION  

 

For the purpose of simulating the two-

dimensional flow upstream from the screen formed of 

cylindric bars, we shall acknowledge the following 

hypotheses: the fluid is perfect and incompressible, the 

motion is stationary and potential and plane, the screen 

bars being scarce, we consider as insignificant the 

influence of the nearby bars, the instalation angle 

between the bars and the flow direction is 90. For the 
example analysed to give a generalisation to the results, 

we consider the dimensionless treatment in the potential 

function  
. This implies the use in their dimensionless 

form both the variables x
, y

, and the elements that 

define the analysis domain: the internal between the 
middle of the distance between two consecutive bars 

and the axis of one of them is l / .2 0 6 , the domain 

length  b  1. , the radius of the cylindric bar 

2.0R . 

 
Fig. 1 Sectioning the bars with the motion plane and 

establishing 

 

 

2. BOUNDARY ELEMENT METHOD USING 

LINEAR ELEMENT FOR THE PLANE 

POTENTIAL FLOW  
 

BEM, as a numerical method proposed for the two-

dimensional simulation of the flow upstream the screen 

of cylindric bars is applied for the numerical solving of 

the  Laplace equation: 

 2 0                             (1) 

 

written in potential  
 of velocity  v

 with boundary 

conditions impose on the boundary 


 of the analysis 

domain 


. The analysis domain together with the 
boundary conditions illustrated in fig.2 is represented 

dimensionlessly  in the coordinate system  ox y 
. 
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Fig. 2 The analysis domain. Boundary conditions. 

 

It is noticeable that on side  AB, BC, DEA of boundary  

 
are imposable Neumann boundary conditions, 

respective by Dirichlet on CD. To solve the integral 

equation 1:  
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          (2)                           

on the boundary of the analysis domain this is 

discretized in a number N = 64 of linear boundary 

elements as a fig.3.  

 
Fig.3 The discretized of the boundary of analysis 

domain in linear boundary elements 

 

The fundamental solution,  u x  ,   from 

equation (2), for the case of two-dimensional potential 

problems has the expression  1 : 

    xrxu ˆ,/1ln
2

1
ˆ, 


 

                        (3) 

in which distance  r x ,   from the source point   to a 

random one  x  from the field is written as such: 

 

          2
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     (4) 

and  q x  ,   is the normal derivative of the 

fundamental solution. This has the expression 1 :  
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    (5) 

in which :   n n x
x
   cos , ,  n n y

y
   cos ,  

represents the projection of normal 

n 

 after the 

coordinate axes ox
 and oy

. We will mention that 

 c   represents a coefficient which depends on source 

point  . If we consider on boundary   
 a number of  

N linear elements then for the integral equation (2 ) 

corresponds the following discretized form:  
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                   (6) 

The values of potential    x  and its normal 

derivative  
  







x

n
 in any point x  of a linear 

element are determined with the help of node values and 

two interpolation functions 1, 2 : 
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            (7) 

The interpolation functions from  (7) have the 

expressions: 

  2/11       2/12        1 1,    (8) 

According to what has been previously mentioned 

equation (6) is written as such: 
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            (9) 

when coefficients Hi j  and Gi j  have the expressions : 

 

H h hi j i j i j 1

2 1
  ;  G g gi j i j i j 1

2 1
           (10) 

 

and hi j1

2
 , hi j

1
, gi j1

2
 , gi j

1
 are computed whith 

relations: 
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From (9) and (10) can be noticed that for writing the 

discretized equation which corresponds to node i , we 

must sum up in one term the contribution of two 

neinghbour elements, thus obtaining the node 
coefficient. Ecuation (9) can be written under the 

following matrix form 1:                                                
 

HU GQ                          (13) 

where :  
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H
H for i j

H c for i j
i j

i j

i j i




 








           (14)  

are elements of matrix H , Gi j  of G , and  j


 and  

 

















n
j

are elements of vectors U  and Q . 

The diagonal coefficients Hi i  can be expressed with 

the help of the off diagonal ones under an easly 

implementable form on the computer, like such : 

 

H Hi i i j

j
j i

N

 




1

           i N 1,             (15) 

Referring to coefficients Gi i  we mention that these can 

be computed analytically and the relation obtained is : 
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where li1  and li  are the lenghths of the two nearby 

elements with their contribution summed up in node i . 

After implementing the N boundary conditions, the 

matrix ecuation (13) can be reorganised in such a way 

that we obtain a linear system of form: 

A X B                            (17) 

in which the vector of unknowns X  contains both 

values   j


 as well as 

 













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n
j

in the nodes where 

these are unknown. For determining the values  i


 in 

point  i  from domain 
, we will use the following 

integral representation written in discretized form  1: 
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        (18) 

We shall compute by numerical derivation components 

v
x


and v
y


of the dimensionless velocity v
, because 

we know both the values of the potential function   
 

in the nodes on the boundary 


 as well as in points  

 i  from 


, and then according to the relation: 

           0 v dx v dy
y x

c

                   (19)                                      

are obtained the values of the stream function   
 in 

point  i  from 


. 

Further on are determined: the equipotential lines and 

streamlines, and then are computed the dimensionless 

velocities v
, v  and the dimensionless pressure p  in 

the points that define the streamlines using the relations: 

  22

1
22

1,, vp
v

v
vvvv

AByx






      (20) 

The inflow dimensionless  in the analysis domain is 

marked with v AB
 and has the value 1.667. 

 

3. NUMERICAL REZULTS 

 

For obtaining numerical results were made in 

FORTRAN lanquage for  IBM PC or compatible ones 

the programms LPLANBEM and LFIMPBEM. The first 

solves the integral equation (9) on the boundary  
 and 

the second computes according to integral 

representation  (18) the potential function values in 

points  i  from analysis domain and finally determines 

the hydrodynamic field and the velocities and pressures 

distributions along the streamlines. În fig. 4 are 

presented   i  from the analysis domain 
 and how to 

number  again the nodes on the boundary  
. 

 
Fig.4 Numbering again the nodes on the boundary and 

establishing the domain points 
 

The streamlines and the ones forming the hydrodynamic 

field are presented on the whole in fig.5. 

 
Fig.5 The hydrodynamic field 

 
From  the velocities and pressures field from fig.6, fig.7 

we interested in the velocities and pressures along the 

streamline    0.  This contains also the solid 

boundary chosen from conditions of symmetry. For 

compairing these distributions these have been 

computed with the FEM using the programme 

PSIELFMP. The components of velocity v e
on the 

linear isoparametric finite element “e“ is computed with 

relations corresponding to its gravity center 4: 
 

 v A
x

e

N N

e


    0

1

2  ; v A
y

e

N N

e


    0

1

1    (21) 
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Fig.6 The velocities field along the streamline    0.  

 
Fig.7 The pressures field along the streamline  

 

4. ANALYTICAL MODEL 

 

The analytical model of the liquid flow motion around a 

slightly oval cylinder placed in a channel that has 

parallel walls, is presented in bibliographical references 

[3], [5], [6]. If we the liquid flow to be uniformed 

having of 0v velocity, the channel walls are the flow 

surfaces as shown in figure 8 in which the system 

formed by two equal sources with opposite signs has the   

moment noted with m  and is placed in the origin 

coordinate axes, we shall write the following relations 

for the complex potential  zf , for m and for the w  

complex velocity:  

 )(cot)2()( 0

11

0 zzlglimzivzf     (22)  

 12

0

212  lashvlm                     (23) 

 1221

0 sin2  zlmliivw               (24)                                               

 
Fig.8 The cylinder  placed in a channel with 

parallel walls 

 

The complex potential of the motion can also be written  

 izf )(                     (25) 

in which  y,x   and  y,x  are the 

potential and flow functions. Thein expressions and thos 

of the xv  and yv velocity components written both 

dimensional and dimensionless are  explicitely 

presented in bibliographical reference [6], and for this 

reason they shall not be mentioned in this paper. 

 
Fig.9 The velocities field along the streamlines 

 
Fig.10 The pressures field along the streamlines 

 

5. CONCLUSIONS 

 

From the velocity and pressure distributions in 

fig.9 and fig.10, respectively fig.6 and fig. 7 for BEM,  

taking into account the analysis domain, one can 

observe that 0v and 1p  in point E  for 

80.s 
 and 212.v   and 883.p   in point D  

for 111.s 
.  

The dimensional velocities in the boundary 

points of the circular section of the  raking screen′s 

bases, are obtained by multiplying dimensionless 

velocity v  with dimensional velocity 0v  in the case of 

the analytical model, respectively 
ABv  in the case of 

the numerical model.   
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