

ADVANCED DESIGN OF GLASS STRUCTURES

Lecture L2 Glass strengthening methods

Viorel Ungureanu

European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and Catastrophic Events 520121-1-2011-1-CZ-ERA MUNDUS-EMMC

List of lessons

1) History, chemical composition, production

2) Glass strengthening methods

- 3) Laminated glass and interlayer's
- 4) Fracture strength and testing methods
- 5) Glass plates under uniformly distributed load
- 6) Aesthetic coatings, insulated glass units
- 7) General design guidelines
- 8) Design of compressed members
- 9) Design of glass beams
- 10) Hybrid load-bearing members
- 11) Curved glass members
- 12) Design of bolted connection
- 13) Design of glued connection
- 14) Glass roofs
- 15) Structural glass facades
- 16) Examples of glass structures

Objectives of the lecture

Objectives

Introduction

lacksquare

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

- Strength of annealed glass
- Fully tempered glass

Introduction

- Heat strengthened glass
- Chemically strengthened glass
- Glass failure modes

Introduction

Objectives

Introduction

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

Why temper (strengthen) glass?

- Increase apparent tensile strength due to compressive residual stresses on the surfaces of the glass;
- Principally similar to "prestressing" methods in structural engineering;
- Improve breakage performance due to small, blunt pieces/ splinters – so called <u>safety glass</u> (a tempered glass);
- Improve apparent tensile strength but still keep breakage performance in laminated glass after fracture similar to laminated annealed glass (heat strengthened glass).

Introduction

Objectives

Introduction

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

Strength of glass depends on:

- surface condition and edge quality
- load duration
- environmental condition, especially humidity
- stress distribution on the surface
- size of the stressed area
- damage of glass surface flaws and cracks

Influence of surface flaws

Strength of annealed glass

Objectives

Introduction

•

•

Strength of annealed glass

- Fully tempered glass
- Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

Annealed float glass - insufficient tensile strength due to surface flaws \rightarrow heat treatment – tempering

- unavoidable flaws on the surface can grow under effective tensile stress
- tensile strength of annealed glass 45 MPa

- treatment of glass: greater resistance to mechanical and thermal loads
- three different basic types with regards to the strength and fracture patterns

Objectives

Introduction

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

۲

1. FULLY TEMPERED GLASS (TOUGHENED GLASS)

Principle of the thermal tempering process

Idea: Heating the glass well above the glass transformation temperature T_g and rapid quenching of the surfaces to ambient temperature

Objectives

Introduction

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

Viscosity of soda-lime glass at elevated temperatures

Objectives

Introduction

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

Machinery for the thermal tempering process

Temper equipment for flat glass

Objectives

Introduction

Strength of

annealed glass

Fully tempered

Tempering process

Heating Cooling ∆t 120-150 °C 605-630 °C Surfaces in Fully tempered Heat strenghtened Compression Center in tension 120 60 -60MPa ٥

glass Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

- <u>quenching</u> (fast cooling) with air blown over both sides of pane
- cooling and stiffening first on the surface, delayed cooling and consolidation of the core \rightarrow internal stress (parabolic distribution)
- surface in compression (90 150 MPa), core in tension

Objectives

Introduction

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

Elastic material vs. viscoelastic material

TIMELINE (Typical times)

Objectives

Introduction

Strength of

alass

glass

annealed glass

Fully tempered

Heat strengthened

strengthened glass

Strength of glass

Glass failure

modes

NiS inclusions

Chemically

ADVANTAGES

- high value of bending strength (compressive surface stress + tensile strength of annealed glass)
- compressive stress not influenced by surface defects
- withstand local temperature differences up to 150° C (float glass 40° C)
 - overloading or damage glass breaks into numerous small pieces, not dangerous

DISADVANTAGES

- thermal treatment after mechanical work (cutting, drilling, edge finishing)
- greater initial deformation sinusoidal waves from transport roller
- spontaneous fracture by nickel sulphide inclusions

Fracture pattern of

fragments or dice

tempered glass: small

SUSTAINABLE STEEL AND TIMBER CONSTRUCTIONS

Fully tempered glass

Resistance of Tempered Glass

Residual stress distribution

Introduction

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

SUSTAINABLE STEEL AND TIMBER CONSTRUCTIONS

Residual stress distribution

SUSTAINABLE STEEL AND TIMBER CONSTRUCTIONS

Residual stress distribution

Objectives

Introduction

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

Weakened areas of the edge stresses in comparison to the body stresses – tempered glass

Heat-strengthened glass

Objectives

Introduction

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

•

•

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

2. HEAT-STRENGTHENED GLASS (PARTIALLY TEMPERED GLASS)

- similar production from same initial temperature slower cooling
- reduction of the surface pre-stress level (35 55 MPa)
 - withstand local temperature differences up to 100 $^\circ\,$ C
 - greater initial deformation in comparison with float glass

internal stress: 90 - 150 MPa

internal stress: 35 – 55 MPa

Heat strengthened glass

Objectives

Introduction

۲

•

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

- without spontaneous failures due to nickel sulphide inclusions
- fragmentation similar to annealed glass = keep glass panes in position after cracking when they are framed or laminated

comparison of fracture pattern: float annealed, heat-strengthened glass and fully tempered glass

Strength refined glass

Objectives

Introduction

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

destructive tests: fragmentation test - BS 6206, pr EN 12150

- struck in a controlled manner
- number of glass fragments in a standard area are counted
- surface compression can be deduced from the number of fragments (higher number of fragments = increasing surface stress in given area)

non-destructive tests: optical instrument – differential surface refractometr

Strength refined glass

Objectives

Introduction

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

 \neg

SUSTAINABLE STEEL AND TIMBER CONSTRUCTIONS

Initial deformation

- <u>float glass</u> initial deformation < L/2500
- <u>thermally strength refined glass</u> initial deformation in the shape of sinusoidal waves ~ L/300
- roller wave and edge dip caused by sagging in semi-molten state
- overall bow caused by differential cooling of the two sides of the plate

• these two effects can occur together resulting like this shape

NiS inclusions

Objectives

Introduction

•

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

DISADVANTAGES of tempered glass

- spontaneous fracture: nickel sulphide inclusions (NiS), which expand their volume, up to about 2 years after production invisible
- destructive HEAT-SOAK TEST (DIN 18516) (additional thermal test heated up to 290 \pm 10° C, constant temperature for 8 hours)

NiS inclusions

۲

Chemically strengthened glass

Strength of glass

Glass failure modes

NiS inclusions and related failure of tempered glass

- Spontaneous breakage sudden failure of thermally tempered glasses (apparently) without external action.
- Phenomena is known since the 1960s.
- For high-rise buildings a big echo in media occurs generally ("flying glass debris").
- One reason for spontaneous breakage are small (50 μ m to 500 μ m diameter) that undergo a volume change.
- The typical breakage pattern ("butterfly") is one indication, but not a sufficient indication for NiS.
- Today, the heat-soak-test is the most efficient measure to bring panes with inclusions to failure in advance.

light microscope pictures

NiS inclusions

Objectives

Introduction

Strength of annealed glass

Fully tempered glass

•

•

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

NiS inclusions – phase change mineral

- Nickel-Sulphide is a mineral with a high- and a low-temperature phase.
- NiS undergoes a temperature-related, time-dependent phase change in glass at temperatures < 379° C from a-NiS to b-NiS which is connected to a volume increase.
- The volume increase leads to failure in thermally tempered glass if the inclusion is in or near the tension zone of the temper stress.
- 1 g of Nickel can affect days of the production of a typical Float-line!

phase change at temperatures that are present during tempering

Heat soak testing

Objectives

Introduction

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

Heat-Soak-Test (HST)

- continuous heating
- temperature: 280-320°C
- holding temperature: 290-300°
- holding time \geq 2 or 4 hours
- cooling
 - phase change of NiS is strongly accelerated
 - panes break already in the oven
 - Open question: failure probability after heat soaking? some research available
- Quality measures (e.g. color change stamps, nano-marking ...)

3. Chemically strengthened glass

Objectives

•

•

Introduction

Strength of annealed glass

Fully tempered

glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

Process for chemically strengthening

- chemical pre-stressing is realized by ionic exchange
- glass pane is immersed in a hot molten salt (hot potassium chloride bath) at elevated temperature about 500 $^\circ\,$ C
- smaller sodium ions in the glass surface are exchanged for the larger potassium ions
 - fracture behaviour corresponds to float glass

Chemically strengthened glass

Objectives

Introduction

ullet

ullet

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

ADVANTAGES

- without thermal deformation \Rightarrow suitable for very thin glass panes
- chemically strengthened glass can be cut, edge has strength of normal glass

DISADVANTAGES

small depth of penetration \Rightarrow highly susceptibility to surface defects because strengthened zone is not very deep

compression stress

tension stress

Strength of glass

Objectives

Introduction

Strength of annealed glass Fully tempered glass Heat strengthened glass NiS inclusions Chemically strengthened glass **Strength of glass** Glass failure modes

Residual stress and strength in thermally treated glass

Property	Tempered Glass	Heat Strength. Glass	Chemically strength. Glass
Surface compression stress	100 - 160 MPa	40 – 60 MPa	300 – 900 MPa
Core tension stress	50 - 80 MPa	20 – 30 MPa	depends on height of compression zone
Characteristic bending strength (5%- fractile, after European standards)	120 MPa	70 MPa	150 MPa - to be used with great caution due to vulnerability of compression zone
Allowable stress in a global safety concept	50 MPa – 70 MPa	29 MPa – 40 MPa	not given
Fracture pattern	small dices, ca. 1 cm²	big pieces, comparable to annealed glass	big pieces, comparable to annealed glass
Compression zone	20% of thickness	20% of thickness	typically about 100 μm

Glass failure modes

Typical glass failure

Objectives

Introduction

Strength of annealed glass

Fully tempered glass

Heat strengthened glass

NiS inclusions

Chemically strengthened glass

Strength of glass

Glass failure modes

d) hard spot on the edge e) inclusion

- instability failure compression member or flexural member
- overstressing of the glass in tension by excessive uniform load, blast, impact, thermal stresses or uneven / inappropriate supports
- surface and edge defects

solid inclusions

Typical glass failure

Cost

References

Educational pack of COST Action TU0905 "Structural Glass - Novel design methods and next generation products"

Aben H., Guillemet C.: Photoelasticity of Glass. Berlin, Springer, 1993.

Aronen , A.: *Modelling of deformations and stresses in glass tempering.* Dissertation, Tampere University of Technology, April 2012.

Aronen , A., Karvinen, R. (2011) *Modeling of Deformations and Stresses During Glass Tempering.* Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition, Nov. 11-17, 2011, Denver, USA.

Gardon, R., Narayanaswamy, O. S. (1970) *Stress and volume relaxation in annealing flat glass.* Journal of the American Ceramic Society, 53(7), 380-385.

Karlsson, S., Jonson, B. and Stålhandske, C. (2010) *The Technology of Chemical Glass Strengthening - A Review,* European Journal of Glass Science and Technology Part A, vol. 51, no. 2, pp. 41-54.

Nielsen, J.H., Olesen, J.F. and Stang, H. (2009) *The Fracture Process of Tempered Soda-Lime-Silica Glass.* Experimental Mechanics, 49(6): 855-870.

Nielsen, J.H., *Tempered Glass - Bolted Connections and Related Problems.* PhD-thesis, DTU Civil Engineering, 2009.

Scherer, G.W., Relaxation in Glass and Composites. Wiley, New York 1986.

Schneider J. (2004) *Glass Strength in the Borehole Area of Annealed Float Glass and Tempered Float Glass.* International Journal of Forming Processes (IJFP), Special Issue on Glass, Vol. 7, No.4, pp. 523-541.

Schneider J., *Festigkeit und Bemessung punktgelagerter Gläser und stoßbeanspruchter Gläser.* Dissertation, TU Darmstadt, 2001 (in German).

This lecture was prepared for the 1st Edition of SUSCOS (2012/14) by Prof. Sandra Jordão (UC).

Adaptations brought by Prof. Viorel Ungureanu (UPT) for 2nd Edition of SUSCOS

Thank you for your kind attention

viorel.ungureanu@upt.ro

http://steel.fsv.cvut.cz/suscos

