

The 6th International Conference on **Thin Walled Structures**

05 – 07 September 2011, Timisoara, Romania www.ct.upt.ro/ictws2011.htm

FINAL PROGRAMME

Organised by,

The "Politehnica" University of Timisoara **Department of Steel Structures and Structural** Mechanics

and

Ε

Romanian Academy – Timisoara Branch Laboratory of Steel Structures

in co-operation with

European Convention For Constructional FCCS CECM Steelwork KS

GENERAL PROGRAMME

Monday, 05.09.2011

$08^{00} - 09^{00}$	Registration	
$09^{00} - 09^{30}$	Opening Session	
	eynote Session 1	
	Coffee Break	
$11^{00} - 13^{00}$	Parallel sessions	
Session 1.1:		Session 8.1: Shell and space structures
$13^{00} - 14^{30}$	Lunch	
$14^{30} - 15^{30}$ K	eynote Session 2	
$15^{30} - 16^{30}$	Parallel sessions	
	Storage racking	Session 8.2: Shell and space structures
	Coffee Break	
$17^{00} - 18^{30}$	Parallel sessions	
Session 7.2:	Storage racking	Session 4.1: Connections in thin-walled
		structures
$20^{30} - 22^{30}$	Welcome Reception	

Tuesday, 06.09.2011

· · · · · · · · · · · · · · · · · · ·			
08 ⁰⁰ – 09 ⁰⁰ Registration			
08 ³⁰ – 09 ³⁰ Parallel sessions			
Session 5.1: Cold-formed steel structures	Session 4.2: Connections in thin-walled		
	structures		
$09^{30} - 10^{30}$ Keynote Session 3			
10 ³⁰ – 11 ⁰⁰ Coffee Break			
11 ^{°°} – 13 ^{°°} Parallel sessions			
Session 5.2: Cold-formed steel structures	Session 1.2: Buckling		
13 ⁰⁰ – 14 ³⁰ Lunch			
14 ³⁰ – 16 ⁰⁰ Keynote Session 4		$14^{30} - 18^{30}$	ECCS TWG8.4 Meeting on Shell
16 ⁰⁰ – 16 ³⁰ Coffee Break		Buckling	
16 ³⁰ – 18 ³⁰ Parallel sessions			
Session 3.1: Behaviour of thin-walled	Session 2.1: Post-buckling analysis and		
structures under extreme loadings	failure modes		
20 ^{°°} – 23 ^{°°} Conference Banquet			

Wednesday, 07.09.2011

08 ³⁰ – 10 ³⁰ Parallel sessions		
Session 6.1: Composite structures	Session 8.3: Shell and space structures	Session 10: RFCS-Project 'SEMI-COMP+'
		Design proposal for the transition of cross-section
		and member resistances from class 2 to class 4
10 ³⁰ – 11 ⁰⁰ Coffee Break		
11 ⁰⁰ – 12 ³⁰ Parallel sessions		
Session 3.2: Behaviour of thin-walled	Session 9: Plated structures	
structures under extreme loadings		
12 ³⁰ – 14 ⁰⁰ Parallel sessions		
Session 6.2: Composite structures	Session 2.2: Post-buckling analysis and	
	failure modes	
14 ⁰⁰ – 14 ¹⁵ Closing session		
14 ¹⁵ – 15 ³⁰ Lunch		

Thursday, 08.09.2011 08^{3₀} – 18^{₀₀} Excursion Tour

DETAILED PROGRAMME OF SESSIONS

Monday, 05.09.2011

- $08^{00} 09^{00}$ Registration
- $09^{00} 09^{30}$ Opening Session

Keynote Session 1

Chairmen: V. Gioncu

- $10^{9^{30}} 10^{9^{30}}$ Ulrike Kuhlmann, Antonio Zizza, Benjamin Braun, Rolando Chacon, Balazs Kövesdi and Franc Sinur: Safety and stability of slender plated elements – New chances and developments of Eurocode 3 Part 1.5 $10^{9^{00}} - 10^{3^{0}}$ Benoit P. Gilbert and Kim J.R. Rasmussen: Recent research on the design and behaviour of drive-in
- 10⁵⁰ 10⁵⁰ Benoit P. Gilbert and Kim J.R. Rasmussen: Recent research on the design and behaviour of drive-in steel storage racking systems
- $10^{30} 11^{00}$ Coffee Break

 $11^{00} - 13^{00}$ Parallel sessions

11	-15 Parallel sessions		
	ssion 1.1: Buckling	Ses	ssion 8.1: Shell and space structures
Ch	airmen: E. Batista & M. Kotelko	Ch	airmen: A. Sadowski & F. Guarracino
1.	Pedro Natário, Nuno Silvestre, Dinar Camotim:	1.	Cornelia Doerich-Stavridis, J. Michael Rotter:
	Localized web buckling analysis of cold-formed steel		Estimating the plastic collapse load of a shell using
	beams using GBT		LA, MNA and GMNA finite element analyses
2.	Cilmar Basaglia, Dinar Camotim: GBT-based buckling	2.	André Da Silva, Ali Limam, Fabien Lorioux, Serge
	analysis of cold-formed steel trusses		Radulovic, Vincent Taponier: Buckling of
3.	Michael J. Andreassen, Jeppe Jönsson: Distortional		pressurized cylindrical shells under axial
	eigenmodes and solutions for thin-walled beams		compression or bending load
4.	Naoual Djafour, Mustapha Djafour, Abdellatif	3.	Lei Chen, J. Michael Rotter, Cornelia Doerich-
	Megnounif, Mohamed Matallah, Djawed Zendagui: A		Stavridis: Buckling behaviour of cylindrical shells
	constrained finite strip method for prismatic members		of stepwise wall thickness under uniform external
	with branches and/or closed parts		pressure
5.	Ahmed Godat, Frederic Legeron, Dieudonné Bazonga:	4.	Patricia Pappa, Spyros A. Karamanos: Non-
	Local buckling behavior of thin-walled tubular polygon		associative constitutive model and numerical
	columns under axial compression		implementation for buckling calculations in
6.	Zhanjie Li, Attila L. Joó, Sándor Ádány and Benjamin		cylindrical steel shells
	W. Schafer: Modal identification for finite element	5.	Andrea Spagnoli, Lorenzo Montanari:
	models of thin-walled members		Simultaneous modes in the buckling of axially
7.	Kunihiro Takahashi, Mayuo Kinoshita, Kazuki		compressed cones
	Akabane: Balance equations for torsional-flexural	6.	Adam J. Sadowski, J. Michael Rotter: Different
	buckling of thin-walled columns based on multi-scale		computational analyses and the behaviour of thin-
	continuum mechanics		walled cylindrical shells under unsymmetrical strip
8.	Gábor Schnierer, Attila L. Joó, Nuno Silvestre:		loads
	Generalized beam theory based modal response	7.	Paweł J. Błażejewski, Jakub Marcinowski:
	spectrum analysis		Consequences of eccentric discharge of a steel silo
			designed only for centric discharge
		8.	Cem Topkaya, J. Michael Rotter: Stiffness of silo
			supporting ring beams resting on discrete supports

 $13^{00} - 14^{30}$ Lunch

Keynote Session 2

Chairmen: D. Camotim $14^{3^{o}} - 15^{o^{o}}$ Federico M. Mazzolani: 3D aluminium structures $15^{o^{o}} - 15^{3^{o}}$ J. Michael Rotter: Challenges in the generalisation of structural buckling assessments to
all structures and load cases

$15^{30} - 16^{30}$ Parallel sessions

Ses	sion 7.1: Storage racking	Session 8.2: Shell and space structures			
Ch	airmen: F. Roure	Cha	airmen: S. Karamanos		
1.	Hervé Degée: New European Recommendations for the	1.	Mihai Nedelcu, Cosmin G. Chiorean: GBT		
	design of static steel pallet racks in seismic conditions –		formulation to analyse the stability of isotropic		
	The FEM 10.2.08 Code of Practice		conical shells		
2.	Vinh Hua, Kim J.R. Rasmussen: Friction coefficient and	2.	Takaya Kobayashi, Yasuko Mihara, Fumio Fujii:		
	in-plane shear stiffness of steel storage rack timber		Path-tracing analysis for post-buckling process of		
	pallets		elastic cylindrical shells under axial compression		
3.	Benoit P. Gilbert, Kim J.R. Rasmussen: Determining	3.	F. Guarracino, A.C. Walker A simplified		
	the transverse shear stiffness of steel storage rack		analytical approach to liner wrinkling of CRA		
	upright frames		lined pipes		
4.	Kamal M. Bajoria, Keshav K. Sangle: Finite Element	4.	Annemiek Hilberink, Nol Gresnigt, Bert Sluys: A		
	buckling analysis of 3-D conventional pallet and drive-		finite element method approach to liner wrinkling		
	in cold-formed storage rack structures with semi-rigid		of lined pipe		
	connections		1 1		
	6				

 $16^{30} - 17^{00}$ Coffee Break

17 ^c	$^{\circ}-18^{3\circ}$ Parallel sessions		
Ses	sion 7.2: Storage racking	Ses	sion 4.1: Connections in thin-walled structures
Ch	airmen: H. Degee & M. Casafont	Cha	airmen: P. Mäkeläinen & LW. Tong
1.	Miquel Casafont, Francisco Caparrós, Magdalena	1.	Luigi Fiorino, Ornella Iuorio, Vincenzo Macillo,
	Pastor, Francesc Roure, Jordi Bonada: Linear buckling		Raffaele Landolfo: Evaluation of shear and tension
	analysis of perforated steel storage rack columns with		strength of self-drilling screws by experimental test
	the finite strip method	2.	Thomas Misiek, Saskia Käpplein: Pull-through
2.	Magdalena Pastor, Francesc Roure, Miquel Casafont,		resistance of tensile-loaded screw-fastenings of thin-
	Jordi Bonada, Joan Noguera: Longitudinal strain		walled sheeting and sandwich panels
	distributions in rack uprights. Equivalent thickness	3.	Lingli Pan, Yiyi Chen: Study on the behavior of panel
3.	Paolo Armani, Nadia Baldassino, Riccardo Zandonini:		zone with vertical stiffener in steel moment resistant
	Study of the response of uprights of pallet racks under		frames
	compression	4.	Wei Lu, Pentti Mäkeläinen, Jyri Outinen, Zhongcheng
4.	Andrei Crisan, Viorel Ungureanu, Dan Dubina:		<i>Ma</i> : Design of screwed connections in cold-formed steel
	Behaviour of cold-formed perforated sections in		sheeting in fire
	compression. Part 1 – Experimental investigations	5.	Zhongcheng Ma, Wei Lu, Pentti Mäkeläinen, Jyri
5.	Andrei Crisan, Viorel Ungureanu, Dan Dubina:		Outinen: Behaviour of shot nailed connection in cold-
	Behaviour of cold-formed perforated sections in		formed steel sheeting at elevated temperature
	compression. Part 2 – Numerical investigations	6.	Ran Feng, Ben Young: Numerical investigation of
6.	Zhenyu Yao, Kim J. R. Rasmussen: The inelastic		cold-formed stainless steel tubular X-joints at elevated
	behavior of perforated plates under axial compression		temperatures

 $20^{30} - 22^{30}$ Welcome Reception

Tuesday, 06.09.2011

08⁰⁰ – 09⁰⁰ Registration

08^{3}	$^{30} - 09^{30}$ Parallel sessions		
Ses	ssion 5.1: Cold-formed steel structures	Ses	ssion 4.2: Connections in thin-walled structures
Ch	airmen: N. Silvestre	Ch	airmen: B. Young
1.	Yuner Huang, Ben Young: Pin-ended column	1.	Lincy Pyl, Luc Schueremans, Willem Dierckx, Iveta
	tests of cold-formed lean duplex stainless steel		Georgieva: Numerical and experimental modeling of the
2.	Gábor Jakab, László Dunai: Thin-walled C-		joints in 3D frame structures made of cold-formed thin
	section members in eccentric compression		gauge members
3.	Jung Kwan Seo, Mahen Mahendran: Design of	2.	Filipe Santos, Luis Simões da Silva: Connections of cold
	Litesteel beam floor joists with web openings		formed profiles in industrial buildings
	using an equivalent web thickness method	3.	Paul Pernes, Zsolt Nagy: Calibration of a finite element
4.	Ádám Zsarnóczay, László G. Vigh: Static		model for evaluation of cold-formed steel bolted joints in
	behaviour of an innovative mounting solution		pitch-roof portal frames
	for supporting structures on soft covered flat	4.	Szymon Swierczyna, Walter Wuwer: Journal friction in
	roofs		bolted lap joints in a complex state of load

Keynote Session 3

Chairmen: L. Godoy

$09^{30} - 10^{00}$	Jin-Guang	Teng	Å	Т.	Yu:	Hybrid	FRP-concrete-steel	double-skin	tubular	members:	concept,
2	behaviour a	and des	ign								

 $10^{00} - 10^{30}$ Luis Simões da Silva: Stability and design of thin-walled steel shells

$10^{30} - 11^{00}$ Coffee Break

$11^{00} - 13^{00}$ Parallel sessions

	sion 5.2: Cold-formed steel structures	Session 1.2: Buckling					
Chairmen: M. Mahendran & O. Celik		Chairmen: L. Dunai & M. Djafour					
1.	Luigi Fiorino, Ornella Iuorio, Vincenzo Macillo, Raffaele Landolfo: "Multi-performance" design methodology for sheated cold-formed steel structures	 Cao Hung Pham, Gregory J. Hancock: Elastic buckling of cold-formed channel sections in shear Nicolae Băluţ: Second order analysis of unbraced runway girders 					
2.	<i>Tian Gao, Cristopher D. Moen</i> : A prediction model for girt-panel interaction in metal building wall systems	3. <i>S. Ádány, D. Visy</i> : Lateral-torsional buckling of thin- walled beams: An analytical solution based on shell model					
3.	Jian Yang, Qiang Liu: An experimental study of cold-formed steel sigma purlins with sleeve connections	4. Anna Schudlich, Aaron von der Heyden, Cristopher D. Moen: Distortional buckling experiments on cold- formed steel joists with unstiffened holes					
4. 5	Hartmut Pasternak, Gabriel Kubieniec: Flange buckling of sinusoidal corrugated girders	5. <i>Giuseppe Brando, Gianfranco De Matteis</i> : Detrimental effects due to buckling on perforated angle members					
5. 6.	Iveta B. Georgieva, Luc Schueremans, Lincy Pyl, Guido De Roeck: Built-up thin-walled members – experimental investigation Barbara Rossi, Romain Boman, Hervé Degée:	 strength <i>Jia-Hui Zhang, Ben Young</i>: Behaviour of cold-formed steel built-up open sections with edge and web stiffeners 					
	Effects of the roll forming process on the mechanical properties of thin-walled sections made of non-linear metallic materials	 Kamil Słowiński, Walter Wuwer: Investigations of closely spaced built-up bars with flexible joints Haider K. Ammash: Finite difference analysis of linear 					
7.	<i>Michal Jandera, Josef Machacek</i> : Measurement of residual stress pattern in stainless steel cold-rolled SHS	plates buckling under in-plane patch loading					
8.	<i>Benoit P. Gilbert, Lip H. The, Hong Guan</i> : Self- shape optimisation of cold-formed steel closed profiles using genetic algorithm						

Keynote Session 4

Chairmen: M. Bradford

14³⁰ - 15⁰⁰ Narinder K. Gupta: Large deformation in thin-walled structures under impact or blast loading
 15⁰⁰ - 15³⁰ Joseph Loughlan, N. Yidris & K. Jones: The failure of thin-walled lipped channel compression members due to coupled local-distortional interactions and material yielding
 15³⁰ - 16⁰⁰ Robert Tremblay & C.A. Rogers: Seismic design of low-rise steel buildings with flexible steel roof deck diaphragms: a Canadian perspective

16^{oo} – 16^{3o} Coffee Break

16 ³	⁰ – 18 ³⁰ Parallel sessions		
Ses	sion 3.1: Behaviour of thin-walled structures	sion 2.1: Post-buckling analysis	and failure modes
unc	ler extreme loadings		
Cha	airmen: C. Rogers & A. Kasai	irmen: J. Jönsson & S. Adany	
1.	Yong Xu, Yiyi Chen, Xin Cheng, Lewei Tong:	Joseph Loughlan, Noorfaizal Y	<i>idris</i> : The influence of
	Hysteretic behavior of light-weight steel portal	end support boundary condition	ns on the local-overall
	frame	interactive failure mechanics o	f plain channel section
2.	Robert Massarelli, John Franquet, Kishor	columns	-
	Shrestha, Robert Tremblay, Colin A. Rogers:	Eliane S. dos Santos, Pedro B.	Dinis, Eduardo de M.
	Dynamic tests of 0.76 to 1.21 mm steel deck	Batista, Dinar Camotim: Local	-distortional-global
	diaphragms for single-storey buildings	mode interaction in lipped-cha	nnel columns:
3.	Iman Shamim, Jamin DaBreo, Colin A. Rogers:	experimental results, numerica	l simulations and design
	Shake table testing of steel sheathed / cold-	considerations	
	formed steel framed shear walls	Pedro B. Dinis, Dinar Camotin	n, Nuno Silvestre: On the
4.	Tatsuo Kakiuchi, Akira Kasai, Kohei Miyazaki,	design of cold-formed steel ang	gle columns
	Toshitaka Yamao, Saeki Inagaki: A seismic	Olga Garzon, Tim Heisterman	n, Milan Veljkovic: A
	performance evaluation of steel rigid frame	study of an axially compressed	cold-formed folded
	viaducts integrated superstructure and	plate	
	substructures considering local buckling	Iveta B. Georgieva, Luc Schue	remans, Lincy Pyl,
	behaviors	Guido De Roeck: Non-linear fi	nite element analysis of
5.	Suhaib Salawdeh, Jamie Goggins: Numerical	built-up members of cold-form	ed steel profiles
	model for the seismic response of cold-formed	Petr Hradil, Ludovic Fülöp, As	sko Talja: Global
	steel braces	stability of thin-walled ferritic	stainless steel members
6.	Jacek Jankowski: Dynamic buckling of	Pedro S. Ferreira, Francisco V	/irtuoso: Post-buckling
	composite column-beams with piezoelectric	analysis and ultimate strength j	prediction of plates with
	actuators subjected to axial compression	the unloaded edges free from s	tresses using a semi-
7.	Tomasz Kubiak, Mariusz Urbaniak: Dynamic	analytical method	
	buckling of C-shape beam-columns subjected to	Piotr Paczos, Jakub Kasprzak:	Limit load of cold-
	bending	formed thin-walled beams with	1 double-box flanges
8.	Radoslaw J. Mania: Viscoplastic thin-walled		
	columns response to pulse load		

 $20^{00} - 23^{00}$ Conference Banquet

Wednesday, 07.09.2011

08 ³	° – 10 ³⁰ Parallel sessions			
Ses	sion 6.1: Composite structures	Session 8.3: Shell and space structures		
Cha	airmen: R. Landolfo & K. Baskar	Cha	airmen: A. Spagnoli & A. Limam	
1.	Morgan Dundu, Masela S. Mahlaule, Motlatsi S.	1.	Luis A. Godoy, Carlos F. Estrada, Fernando G.	
	<i>Mothetho</i> : Behaviour of concrete filled composite steel columns		<i>Flores</i> : Computer-based simulation of buckling failure of vertical sandwich cylinders embedded in	
2.	K. Chithira, K. Baskar: Investigation on the		soil	
	behaviour of circular CFT columns with and	2.	Mark A. Bradford, Ehab Hamed, R. Ian Gilbert,	
	without shear connectors		Zhen-Tian Chang: Short and long-term non-linear	
3.	M.Y. Yazmil, N.E. Shanmugam, W.H.W.		behaviour of thin-walled concrete domes: Theory	
	Badaruzzaman: Analysis of composite plate girders		and experiments	
	with partial interaction	3.	Alexandru Botici, Teodor Let: Research, projects	
4.	Nahmat Khodaie: Push-out test of short composite		and achievements of supporting towers for low	
	hollow circular steel section columns filled with		power horizontal axis wind turbines	
	expansive concrete	4.	Pramod Kumar Gupta: Axial compression of	
5.	Baskar Kaliyamoorthy, Sureshkannan Ganeshan:		tubular metallic shells having conical geometry	
	Behaviour of composite deck slab made using steel	5.	Morteza Esmaeili, Parisa Haji Abdulrazagh: On the	
	sheets with perforated stiffeners		behavior of long-span soil-metal box culverts under	
6.	Le-Wei Tong, De-Lei Yang, Hong-Zhi Zheng, Xiao-		railway loads	
	Ling Zhao, Fidelis R. Mashiri: Fatigue strength of	6.	Victor Gioncu, Marius Mosoarca: A grid shell for	
	CHS-to-CFSHS T-joints under axial loading		an atrium roof	
7.	Cem Haydaroglu, Adem Turker, Kivanc Taskin,	7.	Nuno Silvestre, Bruno Faria, José N. C. Lopes:	
	Oguz C. Celik: Improving hysteretic behavior of		Carbon nanotubes: are they thin-walled?	
	tubular steel braces using advanced composites	8.	Motohito Sato, Hiroyuki Shima: Thin-shell theory	
8.	Ahmad Maleki, Ted Donchev, Homayoun		for carbon nanotube deformation under pressure	
	Hadavinia, Mukesh Limbachiya: Numerical			
	modelling and experimental investigation of			
	GFRP-steel sandwich shear walls			

 $10^{30} - 11^{00}$ Coffee Break

 $11^{00} - 12^{30}$ Parallel sessions

Ses	sion 3.2: Behaviour of thin-walled structures under	Ses	sion 9: Plated structures		
extreme loadings					
Ch	airmen: G de Matteis & A. Ohtsuki	Cha	airmen: D. Beg & M. El Aghoury		
1.	Dae Kyeom Park, Do Kyun Kim, Bong Ju Kim,	1.	Franc Sinur, Antonio Zizza, Ulrike Kuhlmann,		
	Jung Kwan Seo, Jeom Kee Paik: Material properties		Darko Beg: Buckling interaction of slender plates		
	and crashworthiness of ASTM A131 steel plated	2.	Ákos Marosi, László Gergely Vigh, László Dunai:		
	structures at low temperature: An experimental and		Simplified and non-linear simulation based analysis		
	numerical study		of complex plated elements of the Pentele bridge		
2.	Lincy Pyl, Luc Schueremans, Willem Dierckx, Iveta	3.	Franc Sinur, Darko Beg: Parametric study on		
	Georgieva, Massimo Carroccio, Roel Trippaers:		longitudinally stiffened plated girders		
	Fire safety analysis of a 3D frame structure	4.	Balázs Kövesdi, László Dunai: Interacting stability		
	consisting of cold-formed sections; numerical		behaviour of steel I-girders with corrugated webs		
	modeling versus experimental behaviour based on a	5.	Mircea I. Cristutiu, Daniel L. Nunes: Influence of		
	full-scale fire test		lateral restraints on the behaviour of thin-walled		
3.	Toshitaka Yamao, Masahaya Murata, Akira Kasai:		welded elements with variable cross-section		
	Evaluation of verification method and ultimate	6.	Sathiyaseelan Subramani, Baskar Kaliyamoorthy:		
	strain of I-section members subjected to axial force		Buckling behavior of thin plates under combined		
	and biaxial bending moments		in-plane shear and tensile stresses		
4.	Maria Kotełko, Radosław J. Mania: Quasi-static				
	and dynamic axial crushing of TWCF open-section				
	members				
5.	Baskar Kaliyamoorthy, Rahmathunnisa: Non-linear				
	behaviour of semi-rigid road safety barrier				
6.	Nirosha Dolamune Kankanamge, Mahen				
	Mahendran: Lateral torsional buckling behaviour of				
	cold-formed steel beams at elevated temperatures				

 $12^{30} - 14^{00}$ Parallel sessions

12	– 14 Faranel sessions		
Session 6.2: Composite structures		Session 2.2: Post-buckling analysis and failure modes	
Chairmen: M. Dundu & M. Georgescu		Chairmen: C. Topkaya & D. Grecea	
1.	Thomas Misiek, Paavo Hassinen: Influence of	1.	Cao Hung Pham, Gregory J. Hancock: Tension
	imperfections and of discontinuities of the elastic		field action for cold-formed channel sections in
	foundation on the buckling strength of plane cross-		shear
	section parts of sandwich panels	2.	Zhou Feng, Ben Young: Web crippling strengths of
2.	Piotr Paczos, Jerzy Zielnica, Piotr Wasilewicz:		high strength aluminum alloy tubes with perforated
	Limit load of a rectangular plate with metal foam		webs under ITF loading condition
	core with the application to sandwich beam	3.	Martin Macdonald, Muditha P. Kulatunga:
	structures		Literature review of web crippling behaviour of
3.	Atsumi Ohtsuki: An innovative circular ring method		cold-formed thin-walled structures
	for measuring Young's modulus of thin flexible	4.	F. Portioli, B. D'Amico, G. Di Lorenzo, R.
	multi-layered materials		Landolfo: Modelling of geometric imperfections in
4.	Pawel Jasion, Ewa Magnucka-Blandzi, Waclaw		numerical simulations of built-up cold-formed steel
	Szyc, Krzysztof Magnucki: Global and local		beams
	buckling of a sandwich circular plate with metal	5.	Mohamed A. El Aghoury, Adel H. Salem, Maged T.
	foam core		Hanna, Essam A. Amoush: Finite element modeling
5.	Pawel Jasion, Ewa Magnucka-Blandzi, Waclaw		of uni-axially loaded battened columns composed of
	Szyc, Piotr Wasilewicz, Krzysztof Magnucki: Global		four cold-formed angles
	and local buckling of a sandwich beam-rectangular	6.	Mohamed El Aghoury, Maged T. Hanna: Strength
	plate with metal foam core		of slender I-section beams under concentrated load

 $14^{00} - 14^{15}$ Closing session

 $14^{15} - 15^{30}$ Lunch