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Abstract: Light Nonaqueous Phase Liquids (LNAPL) are 

mineral oil products which, due to accidents can lead again 

and again during storage, transport, and processing to 

strong contamination of groundwater. Consequently, it is 

of interest to investigate the spreading transport behavior 

of these substances in the subsurface. It will be shown that 

the usually applied averaging method for linearization 

leads to large errors. 

The main objective of this paper is precisely verified if the 

simplified linearized Bussinesq’sc equation-based 

modelling usually applied to solve groundwater flow 

problems also reliable for simulation of LNAPL lens 

spreading on the groundwater table. 

To achieve this objective, comparative numerical 

calculation was performed for a particular spreading case, 

namely a radially symmetric spread of an LNAPL lens for 

which there is an exact analytical solution of nonlinear 

equation.  

To reduce the errors a new averaging method-based 

linearization of Bussinesq’sc equation is proposed which 

significantly reduces the errors. This is confirmed with 

relevant numerical examples of LNAPL lens spreading on 

the groundwater table. 

Keywords: LNAPL spread, groundwater modelling, 

linearization of Bussinesq’s equation 

1. INTRODUCTION  

Light Non-Aqueous Phase Liquids (LNAPL) are a 

class of environmentally polluting substances that, due 

to their insolubility in water, can exist and flow as a 

separate phase in the soil over the groundwater table in 

form of a lens (pancake) [1,2,3]. The calculation and 

simulation of convective - dispersive propagation 

processes of light water-insoluble pollutants in phase 

(i.e., LNAPL) is an essential part of different 

engineering disciplines and is particularly used in 

environmental technology at the depollution of 

groundwater. 

The spread of LNAPL in soil and thus in 

groundwater depends on several different physical 

processes, which are viewed differently in various 

transport models. The governing equations that must be 

used for a realistic description of the propagation 

processes are mostly complex, nonlinear partial 

differential equations (NL-PDGL). The initial and 

boundary conditions which must be used for a realistic 

description of LNAPL spreading are also complex due 

to arbitrary entry form and expansion, inhomogeneities 

of aquifer etc. [1], [2].  

The main and primary objective of the correct and 

adequate choice of technical measures to reduce or even 

eliminate the pollution caused by LNAPL lens is to 

know its extension, i.e., its evolution in space and time 

(e.g., sketched in Figure 1). This can be achieved only 

by simulation of the dispersive-convective transport 

processes of LNAPL on the groundwater surface, taking 

into account the boundary and initial conditions as close 

as possible to reality as well as the physical 

characteristics of LNAPL and the aquifer: delimitation 

of the studied domain, boundary conditions on the 

domain contour, zonal inhomogeneities in the domain 

specified by the hydraulic conductivity of the aquifer 

(kfi), the initial form at time t0 of LNAPL – lens, its 

density and the hydraulic conductivity 

A sketch for a representative LNAPL spreading is 

in Figure 1. depicted 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Scheme of LNAPL inflow and propagation on the 

groundwater table through convective and dispersive 

transport processes – a) Cross section; b) Top view 

 

Of course, the simulation presupposes first the 

knowledge of the basic equations of the dispersive-

convective transport process, the correct mathematical 

formulation of the boundary and initial problems, and 

the adequate methods for solving them. These aspects 

are briefly presented in the next paragraph. 

2. BASIC EQUATIONS AND SOLUTION 

METHODS 

For derivation of basic equations of convective-

dispersive spreading of an LNAPL-lens on the 

groundwater table a simplified scheme sketched in 

Figure 2 will be considered.  

Usually the LNAPL/water interface coincides 

approximately with the ambient groundwater table (i.e., 
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hlu<<hl). With this assumption the governing equation 

of the LNAPL – lens convective-dispersive spreading in 

term of its entire thickness hl above of the ambient 

groundwater table has the form [1], [6]: 

 

l l
l w l l l l l

w

h k
n q ( h ) .( k h h ) q

t k


    


 (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Sketch of a LNAPL lens on the groundwater table  

Notations: 

wq    = Darcy velocity of the groundwater 

flow  

kl, kw = hydraulic conductivity for      

LNAPL and water respectively  

 

zl,,  zwl  = LNAPL table and LNAPL/water 

interface elevation  

HGW = Thickness (piezometer head) of the ambient 

groundwater 

hlo, hlu = LNAPL thickness over/below of 

the ambient groundwater table 

hl = entire thickness of the LNAPL  

ql  = specific LNAPL leak 

 

It can be seen, that the obtained governing equation 

(1) of convective-dispersive spreading of LNAPL -lens 

on the ambient groundwater table is in term of LNAPL 

lens thickness hl (x,y,t). a nonlinear partially 

differential equation (NL-PDGL) second order.  

For the proposed reliability analyzes it is enough to 

consider the simplified case of a homogeneous aquifer 

(i.e., kl and kw are constant) and a constant volume of 

the mowing LNAPL – lens (i.e., the spreading of an 

initial existing LNAPL lens). In this case the basic 

equation (1) can be written in the following form:    
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(2) 

 The first term in (2) describes the change over time 

of LNAPL thickness.  

 The second term modelled the convective transport 

of LNAPL lens on the groundwater table having a 

towing speed generated of groundwater flow: 
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(3) 

 The last term describes the dispersive spreading of 

the LNAPL lens and is the non-linear term of the 

governing equation.  

If qw=0 equation (2) become: 

 
(2’) 

 

This equation describes the LNAPL-lens spreading 

on the groundwater reservoir (i.e., the convective effect 

be dropped). 

The solution of LNAPL lens convective-dispersive 

spreading on the groundwater table requires the 

knowledge of groundwater velocity qw. Therefore, the 

groundwater flow problem must be solved beforehand: 

determination of the free groundwater water table i.e. 

the piezometric head function Hw(x.y.t). This means 

that the first step for modelling of NAPL lens 

convective-dispersive spreading is the solution of an 

initial and boundary value problem for the governing 

equation of the groundwater flow. The governing 

equation which describe the unsteady groundwater flow 

in unconfined aquifer in term of the entire groundwater 

depth Hw (x,y,t) is the well-known Boussinesq’s [2], 

[6],[7]: 

 

(4) 

This will be solved considering additionally the 

given initial and boundary conditions corresponding to 

the considered ambient groundwater flow domain.  

Summarizing, the simulation of an LNAPL 

convective-dispersive spreading on the groundwater 

table requires the coupled solution of basic equations (2) 

and (4), both nonlinear partially differential equations. 

In the case of dispersive spreading must be resolved the 

equation (2’) only which is nonlinear as well. 

Given the difficulties that arise in solving nonlinear 

partial differential equation (NL-PDE), it is important to 

discuss the possibilities of finding simplifications of 

these equations such as linearization. Related to this a 

first observation would be, that in both equations (NL-

PDE) (2) for LNAPL lens spreading and (4) for 

groundwater flow the nonlinear term is of same type. 

On this basis, it would be possible to apply the same 

simplifications such linearization for example. This 

would be an advantage for modelling equation of 

LNAPL lens spreading, less studied, through 

transposing the solving methods of groundwater flow 

modelling that is widely studied and verified on 

numerous practical problems [2.] 

To examine this possibility, we will further discuss 

equation (4) of unsteady groundwater flow modelling. 

For this purpose, in Figure 3 a representative vertical 

cross section of groundwater flow is depicted.  

 

 

 

 

 

 
 

 
Figure 3. Sketch of vertical cross section of an unsteady 

groundwater flow in an unconfined aquifer 
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- H0w(t) is a basic height of the groundwater in 

flow domain Ω 

- hw(x,y,t) is the deviating height of the ground 

water table in relation of H0w(t) 

-             and        are averaged heights whose 

meaning will be specified below 

For numerous common technical tasks usually is 

satisfied the following condition: 

 
(5) 

 Between the highest in Fig. 3 take also place, the 

following relationships: 

 (6) 

 

 

(7) 

The basic equation for modelling unsteady 

groundwater flow is the equation (4). Due to 

nonlinearity of this equation, there are relatively few 

exact analytical solutions, and the application of 

numerical methods is also leading to difficulties as well. 

To obtain solutions for a wide range of applications 

a very effective approach is his linearization. The most 

widely used linearization technique is the replace of the 

water depth Hw(x,y,t) in the second term of equation (4) 

through one averaged value in relation to the horizontal 

flow domain surface Ω defined as [2], [3], [6]:  

 

(8) 

It should be noted that this average technic denoted 

as Av1, has the significance of an average height of 

groundwater            on flow domain Ω calculated so that 

the volume of    be equal to the real volume 

Vvolw of groundwater limited by Ω and the free surface 

of groundwater. Replacing the relationships (6), (7) in 

(8) results: 

 

(9) 

Comparing (7) and (9) results averaged height  

 

(10) 

This average technic for the heights                 

and         will further to be named as average of 1st 

order (Av 1.).  

Replacing the first height Hw(x,y,t) of the second 

term of equation (4) with the averaged height, we obtain 

the following usually linearized version of the 

governing equation for modelling unconfined 

groundwater flow [2], [7]: 

 

(11) 

This linearized form of the governing equation is 

currently applied for groundwater flow modelling using 

different analytically and numerical methods and 

standard software as well obtaining reliable results for 

many practical applications in groundwater 

management [2],[6], [7]. 

It is however to be noted that this simplified form 

of the governing equations allows a reliable simulation 

of groundwater flow problems only when the 

groundwater table has relatively small deviation in 

relation to a flat surface (i.e., the condition (5) is 

satisfied). This flow condition is currently satisfied for 

several practical groundwater flows and so, the 

linearized (L-PDEQ) (9) can be applied to solve most 

technical problems of groundwater management using 

also standard software such as MODFLOW, PMWIN as 

well [10].  

For modelling LNAPL -lens spreading on free 

surface of a groundwater reservoir on observe that 

equation (2’) has the same expression as the basic 

equation (4) of groundwater flow modelling. Therefore, 

the first idea would be to use the same linearization 

method for LNAPL as in the case of ground water flow 

modelling discussed above. In this case the averaged 

thickness can be calculated also using the relation (10) 

in which the index “w” will be replaced with “l”.  

 

(12) 

So, the linearized governing equation of LNAPL 

lens spreading on the free groundwater reservoir surface 

has the expression as:  

 

(13) 

It is also to mention that in (13) 

 
(14) 

has the meaning of a dispersion coefficient. 

Compared to the groundwater flow discussed 

above in this case H0l (t) = 0 and so, the condition (5) is 

not satisfied. Consequently, an important question can 

be put namely if this linearized equation using 

averaging 1st order (i.e., Av 1) is reliable or not for 

simulation of LNAPL lens spreading on the 

groundwater table.  

To analyze more correctly and completely the 

answer to this question, another variant of averaging of 

the LNAPL lens height is proposed. This was presented 

in a previous paper [6] and gave better results as Av1. 

The proposed new averaging technique is called 

average second order and notate Av2 is defined by the 

expression: 

 

(15) 

It should be mentioned that this average technic 

Av2 is related to the volume weight centre of LNAPL 

lens. 

To check the reliability of the two variants, an 

example of LNAPL lens spreading will be considering 

for which there are an exact analytical solution. It will 

be performed comparative calculus using several 
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numerical methods [11], [12]. The obtained results and 

answers to the question regarding the reliability of the 

linearized governing equation will be presented in the 

next paragraph. 

3. RESULTS AND DISCUSSIONS 

To check the reliability of both average technics 

Av1 and Av2 defined above a practical example was 

considered, namely the spreading of an existing radial 

symmetrical LNAPL lens which at the time t=0 has o 

form depicted in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Calculus scheme of the LNAPL lens 

 

The values of the geometrical and material 

parameters of the considered example depicted in 

Figure 3 are: hl0max=0.30m; a0(t0) =5.00m; nl=0.25; 

kl=4m/day; Vl0=11,7 m3 

One assumes also that the LNAPL lens volume 

remains constant during the spreading equal to initial 

volume (Vlo). 

For the considered radial symmetric lens spreading 

(Fig. 4) there are an exact analytical solution [2], [6] 

expressed as: 

 

(16) 

 

 

To simplify the notations, hl is still used without the 

index’s “l” (i.e, h). 

The horizontal expansion at the basis of the lens can 

be calculated using the expression: 

 

(17) 

For the numerical solutions of the linearized 

equation (13) were used the explicit finite difference 

method upwind (EAS-UPW) and the MacCormack 

predictor-corrector method (MCV) [11], [12]. To 

calculate the average thickness the simple average 

technique Av1 (12) was used. For the numerical 

calculation of the averaged thickness a break condition 

was introduced  at each time step namely (Vlo-

Vlt)/Vlo10-4. The obtained results for the maximum 

thickness using the exact solution (16) (EAS) and the 

above-mentioned numerical methods based on the 

averaging Av1 (UPW and MCV) for discretization steps 

Δx=Δy=1.0 m, Δt= 0.1 day are presented in Table 1.  

It is noticed that the errors of the numerical 

solutions (NS-A1: UPW and MCV) compared to the 

exact solution (EAS) are relatively large, about 30-80%.  

For the same numerical data in the Table 2 the 

results obtained with average technique Av2 formula 

(15) are presented. 

It is noticed that the errors of the numerical 

solutions (NS-A2: UPW and MCV) compared to the 

exact solution (EAS) are relatively small under 3%. 

 
Table 1. Comparative results and errors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EAS, UPW and MCV (Av 1. Ordner) 

Discretization: Δx=Δy = 1 m, Δt = 0,1 day 

 
Table 2. Comparative result and errors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 EAS, UPW and MCV (Av 2. Ord.) 

 Discretization: Δx=Δy = 1 m, Δt = 0,1 day 

 

The numerical calculus-results are presented in 

Figure 5, for a radial symmetrical LNAPL lens 

spreading using numerical methods UPW and MCV and 

the averaging techniques Av1(NS-A1) and Av2 (NS-

A2), compared to those calculated with the exact 

analytical solution. 
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It can be clearly seen that the results obtained with 

the averaging techniques Av1 and Av2 respectively are 

significant different and the Av2 averaging method 

leads to results that are very close to the exact analytical 

solution.  

 

Figure 5. Results for the spreading of a radial symmetrical 

LNAPL lens using the averaging techniques 

  a) Averaging 1. Order (Av 1.) and  

  b) Averaging 2. Order (Av 2.) 

  

Another example of a numerical simulation of a 

convective-dispersive LNAMPL lens spreading on the 

table of moving groundwater is sketched in Figure 6. 

The flow domain contains three subdomains having 

different hydraulic conductivities (zone 1, 2 and 3). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Sketch of the groundwater flow domain for the 

numerical simulation of LNAPL lens on the groundwater table 

 

Parameters of the considered groundwater flow 

domain to perform the given LNAPL lens spread on the 

moving groundwater table: 

LNAPL volume 13 m³ 

Dimensions of the model area 

x direction 150 m; y-direction 100 m 

 

Discretization: 

Δx= 2 m, Δy= 2 m, Δt= 0.1 days 

Boundary conditions: 

Groundwater levels in the river 5 m and  

on the right side of the flow domain 10 m 

 

Hydraulic conductivities: 

Zone 1 10 m / day 1.2 * 10-4 m / s 

Zone 2 8 m / day 9.3 * 10-5 m / s 

Zone 3 6 m / day 6.9 * 10-5 m / s 

 

Such examples are very important because 

protective or remedial measures can only be used 

sensibly if the extent of the LNAPL spread is known or 

the position of the LNAPL lens is fully recorded. 

The first step to solve this problem is groundwater 

flow modelling which delivers the groundwater velocity 

which further are necessary to model the convective-

dispersive spread of LNAPL lens (see equations 2 and 

3). Groundwater modelling was performed using 

PMWIN [13]. The results of the groundwater flow 

simulation can be shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 7. Results of the groundwater flow simulation  

 

  The LNAPL lens spread was performed using 

the Lax-Wendroff (LMV) numerical method which 

differs from the ERV used in previously examples only 

in the convective term of the difference equation. In the 

LWV, a central difference scheme is used for the 

convective term which delivers stable results. The 

groundwater flow speed was taken over by groundwater 

flow modeling presented above. 

 

The results are presented in Figure 8 and show the 

LNAPL lens spreading on the groundwater table using 

the two averaging techniques: 

a) Averaging 1. Order (Av 1.) and  

b) Averaging 2. Order (Av 2.) 

 

It can be clearly seen in this case also, that the 

results obtained with the averaging techniques Av1 and 

Av2 respectively are significant different, both in terms 

of lens thickness values and the extension through 

dispersion of the polluted area.  
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a) 

 

 

 

 

 

 

b) 

 

 
Figure 8. Results of the convective-dispersive LNAPL lens 

spreading 

4. CONCLUSIONS 

Based on results presented in the article, it can be 

concluded that the use of the classical average technique 

Av1 (formula (10)) to linearize the Businesq’s equation 

for modelling of LNAPL lens spread leads to relatively 

large errors of LNAPL lens thickness profiles (errors of 

30-80 %, Table 1.). Unlike this, the use of the proposed 

average technique Av2 (formula (15)) leads to small 

errors (3-4% for t >1 day, Table 2). 

The comparative presentation of the results in 

Figure 8 regarding the convective-dispersive spread of 

the LNAPL lens on the moving groundwater table also 

confirms the reliability of proposed averaging method 

Av2 in comparison to the classical method Av1 (see 

comparative LNAPL lens expansion in Figure 8). 

It can be concluded, therefore, that the average Av2 

technique proposed is indisputably better than the 

classic one and it is recommended to use for LNAPL 

lens spreading simulation. 

We consider also that the Av2 method can be 

extended successfully to the unsteady groundwater flow 

modeling, substituting successfully the classical 

averaging technique Av1 usually applied in 

groundwater modelling. 
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