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Abstract – This paper presents a numerical solving 

method for the axial-symmetrical flow of the inviscid and 

incompressible liquid through local hydraulic resistances 

of convergent or divergent type, using the Finit Element 

Method. The following elements were determined: the 

hydrodynamic field, the velocity and  pressure 

distributions along the the streamline which coresponds to 

the solid boundary that delimitates the liquids motion. 
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1. INTRODUCTION 

 

The use of modern computers has allowed the 

introduction of numerical experiment and the researcher 

has managed to create a synthesis between the analytical 
thought and the experimental one, for solving complex 

problems. Thus, one of the main scientific models of 

knowing the continual environments is the on based on 

discrete approximation. This model consists of 

decomposing a continual analysis domain in a finite 

number of discrete elements. In this case the 

approximation of the whole is accomplished by the 

ensemble of  all of the composing elements. To simplify 

the application of the Finite Element Method                

(FEM), the stream function   or the velocity potential  

  will be used as auxiliary variables. This paper 

presents just how to integrate the Stokes equation in the 

flow function using FEM , mentioning the limit 

conditions and the recovery of the primitive variables 

like velocities and determining the pressures field by 

writing a Bernoulli theorem.  

 

 

2. INTEGRATION   WITH FEM OF THE STOKES 

EQUATION IN A STREAM FUNCTION 
 

The axial-symmetrical motion, due to the fact that 
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, imposes a cylindrical coordinates system      

(r, θ, z). Taking into account that the liquid is 

considered incompressible and the v


 velocity 

components have the following expressions [1], [6], 

[13]:   

  
rr

vz





1
       ;     

zr
vr






1
        (1)               

The result is: 

0
1

2

2

2

2
















rrrz


              (2) 

known as the Stokes equations in the stream function 

 . Because the motion is considered to be a potential 

one, meaning  v


 , the velocity can be writhen 

as: 
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In order to make the problem a general one it is natural 

to study it under a dimensionless  form and thus we will 

be making the following variable and function changes: 
1  .axLzz   

1  .axLrr   ;   12   Q        (4) 

Q - flow rate, .axL - is the axial extent of the analysis 

domain  , that has the boundary  . This change will 

lead to the Stokes equation written under a 

dimensionless form in the stream function: 
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The dimensionless velocities are:  
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and the connection between them is:  

 

z.axz
vQLv 122       ;  r.axr

vQLv 122        (7) 

Equation (5) on the 
 domain with    

  as 
its boundary, complies with the Dirichlet and Neumann 
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limit conditions, and the function 
 can be globally 

approximated on 
  as follows: 

 
   a              G,1          (8) 

 

where, G is the number of nodes on  
 , and 



a , 


  

are the global interpolation functions and the global 

values of 
  in the global node . 

Applying Galerkin s method we have:  
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which  integrated by parts leads to the next global linear 

system [8],[13]:  
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in which: 
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in which 


a  are the global approximation functions on 

the boundary 
 . If we establish a discrete process of 

 , noted 
e  and having the boundary 

e , 

consisting of E  finite elements, that  the function  
  

can be approximated  locally on 
e , as follows:  
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in which  
e

Na
 are the local interpolation functions, 

e

N

  is the value
  in node N  of 

e , and F is the 

total number of local nodes of the finite element. If we 

apply the Galerkin method in the same way and also use 

the integration by parts we with obtain the following 

local linear system: 
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in which  
e

MND
 coefficients and the local free terms 

e

NF 
 have the expressions: 
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If we take account into the analysis domain in 

the form of finite isoparametric discrete elements, as 

presented in figure 1, the 
e

MND
 coefficients are 

numerically evaluated using a quadrature Gauss formula 

to comply with [1], [8],[9], [13]:  

 
Figure1 Global  and  - natural coordinates for linear 

quadrilateral elements 
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in which m  represents the number of Gauss points of  

i  and i  coordinates on the finite element, and  iw , 

jw  are the ponderate functions. The free terms 
e

NF 
 

are equal to zero in the case of a velocities field 
orthogonal on the entry boundary of the analysis 

domain. Moving from local values to global ones is 

done with the Boolean matrixes  [8], [13]: 
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The velocity components on the finite element in the 

case in which the velocity is calculated in then gravity 

centre of the finite element, is determined with 

expressions [8], [7]:  
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in with   
ABv

 is the entry boundary velocity of the 

domain. The calculus for the potential function is done 

from entry in the domain to its exit, using the following 

written relation between points iM  and jM , as 

follows: 
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3. NUMERICAL RESULTS 

 

The numerical simulation in the case of 

potential axial-symmetrical motion considering the ideal 

and incompressible liquid, was done with FEM in the 

presence of local hydraulic resistances of convergent or 

divergent type. The hydraulic resistances suggested for 

the flow simulation have the same geometry except for 

the convergent regime where the convergent exit is 

inversed with the divergent entry. Figure 2 presents the 

analysis domain and the limit conditions. Because the 
domain is  axial-symmetrical, the flow study requires 

just the axial semiplane superior to the symmetry axis. 

  

   
a) Convergent regime 

 
b) Divergent regime  

 Figure 2  Analysis domain and  limit conditions for 

dimensionless status 

 
  We have to state that for the convergent regime 

we have a drop in the dimension of the section from 
D1=50 mm D2=26 mm, and the axial extent is Lax.=160 

mm. In the case of the divergent regime we have a 

growth of the section D2 to D1   and the same value Lax.. 

In the case of  dimensionless status we must state the 

following values: 1562501 .a 
, 0812502 .a 

, 

250.CDAB  , and the equations that describe the 

solid boundary BC, for  750250 .,.Z  , are: 
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Figures 3 and 4 present the discrete analysis 

domain in linear finite elements shaped as a square also 

stating a global node numbering system. The analysis 

domain for both the convergent and divergent regimes is 

discrete into a number of E=200 finite elements and 

G=246 global nodes. The hydrodynamic field for both 

cases is presented in figures 5 and 6.    

 

 
Figure 3 Discretization of the analysis domain 

 for the convergent regime 

 

 
Figure 4 Discretization of the analysis domain  

for the divergent regime 

 

 
Figure 5  Hydrodynamic field in the convergent regime 

 

 
Figure 6 Hydrodynamic field in the divergent regime 
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Figure 7 Velocities distributions in the convergent 

and divergent regime 

 

 
Figure 8 Pressures distributions in the    

convergent and divergent regime 

 
Figures 7 and 8 present the velocities and 

pressures distributions corresponding to the solid 

boundary ABCD, when 1  in the convergent 

case, respectively the divergent case. To compare the 

velocities and pressures distibutions in the convergent 

case means to turn velocity 
v  into a dimensionless 

one 
DEv

which exits the domain.  

 

 

4. CONCLUSIONS 

 

The potential axial-symmetrical motion has 

been simulated for the local hydraulic resistances of 

the convergent and divergent type, in the hypothesis 

of the inviscid and incompressible liquid, with the 

help of Finite Element Method. 

From the velocities and pressures on the 

entry boundary in the convergent regime are equal to 
those at the exit in the divergent regime.   

Knowing the equations that define parts of 

the solid boundary leads to eliminating the angular 

points that would appear on them, if the boundary 

parts are traced through points, and also eliminating 

the leaps from velocities and pressures field.  

The programme PSIELFAS is flexible and 

allows a change in  the solid boundary portions so 

that we dontt have sudden variations in the velocities 
and pressures field.  

Accomplishing a smooth solid boundary and certain 

velocities and pressures distributions will lead to an 

optimized flow domain. 
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