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Abstract: The geometric challenges in the 

architectural design of warped surface come 

mainly from the physical materialization. This 

paper presents structural forms based on warped 

surface and shows the types of structures made 

during the 20st and 21st century, the geometric 

scheme, the structural behaviour and a projection 

of their potential trends. The analysis creates the 

possibility of comparisons between original and 

current design. 
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1. INTRODUCTION 

 

This analysis presents a geometric study of the 

architectural curvilinear forms that are based on 

warped surface. The structural system of a building 

must be consistent with its appearance, and together 

they must reflect the function of that building. From 

an understanding of the geometry of 3dimensional 

space arises the possibility of realizing these ideals as 

relationships within finished structures. We look back 

in time to see how the alliance between geometry and 

architecture has weathered new forms of structures. In 

particular we show convincing examples of the 

harmonious development of geometry and 

architecture in the 20st and 21st century. 

 The structure clearly plays a fundamental part in 

this equation, and the stiffness and strength it shows 

when responding to various loads depends in turn on 

the used materials, the basic details of the structure, 

the technology of the epoch and last but not least the 

scale of the architectural project. Nevertheless, the 

geometric profile of a structure is of crucial 

importance. 

Mathematician Carl Friedrich Gauss (1777-1855) 

grouped the infinity of curved surfaces into three main 

categories: spheres, cylinders, and saddle-shaped 

surfaces. Emphasis will be laid on the last category in 

this study, saddle-shaped surfaces or more precisely 

ruled minimal surfaces. One of the advantages of 

these types of structures in architecture is that they 

owe their resistance strictly to their form, hence their 

being called self-bearing structures. As these 

architectural forms evolved, the structural analysis 

had a long and difficult history. As they were 

developed and perfected sometime between 1950 and 

1960, at a time when architects were using them as a 

means of artistic expression, long before the computer 

ever entered the architectural scene, a considerable 

amount of effort was required to check the designs. 

 

 2. RULED SURFACES 

 

A ruled surface is a surface formed by a motion 

of a straight line through a space, which is moving 

according to a certain rule. For instance, a line, D, 

lying on three arbitrary curves Γ1, Γ2 and Γ3 in the 

space, called directrices, may intersect three surfaces. 

The D line is then called generator of the ruled 

surface. This study is focused on the non-developable 

ruled surfaces or skew surfaces, in other words those 

surfaces cannot be unrolled onto a plane. They are 

characterized by the variation of the tangent plane to 

the ruled surface as the point of tangency changes on 

the generator. Thus there is a new tangent plane to the 

surface corresponding to each position of the point of 

tangency on the generator. 

The non-developable ruled surfaces are generated 

by a line lying on: Three curved directrices Fig. 1; 

Two directrices and a core surface; Two directrices 

and it is parallel to the generators of a directrix cone; 

Two curves and a directrix line – cylindroid Fig. 2; 

 
Fig.1    Fig.2 

 

    
Fig.3   Fig.4 
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One curved directrix  and two line directrices – conoid 

Fig. 3; Three line directrices, separated by a finite 

distance – hyperboloid Fig. 4; A line directrix to the 

infinite – hyperbolic paraboloid Fig. 5. 

 

 
Fig. 5 

 The surfaces that will be further presented in 

this report are: the hyperboloid, the hyperbolic 

paraboloid and the conoid. 

 

 4. THE HYPERBOLOID OF REVOLUTION OF 

ONE SHEET 

 

The one-sheet hyperboloid of revolution is a 

doubly ruled surface of the second order, generated by 

a straight line D, revolving around another straight 

line (ω, ω’), vertical axis, not situated in the same 

plane as the straight line D Fig. 6. The one-sheet 

hyperboloid of revolution can be also obtained by 

revolving a hyperbola around its axis (ω, ω’) not 

transversal Fig. 7. Every point of the generator 

describes by its revolution a parallel circle of the 

surface. 

 
Fig.6   Fig.7 

As there are two lines that can generate the same 

surface, the one-sheet hyperboloid of revolution is a 

doubly ruled surface. The two lines are part of two 

systems of generators Fig. 8. The front generators are 

called main generators. The vertical projections of 

these main generators can be taken two by two, 

making up the apparent contour of the asymptotic 

cone of the surface. The asymptotic cone of the 

surface is the cone whose vertex is in the center of the 

contour circle and its generators can be obtained by 

directing all the parallels from the center of the 

contour circle to the hyperboloid’s generators. Every 

hyperboloid generator has a corresponding parallel 

generator, on the asymptotic cone and every generator 

on the asymptotic cone has two corresponding parallel 

generators, of different systems on the surface of the 

hyperboloid. 

The general hyperboloid or scalene is a second 

order surface and it is generated by a straight line 

lying at all times on three directrices not parallel to 

the same plane Fig. 9. 

 
Fig.8   Fig.9 

 

4.1 FIELDS OF USE 

 

The hyperboloids of revolution are extremely 

important for the development of architectural 

projects as their doubly curved surface may be 

executed from straight fragments. The pre-stressing 

strands may be efficiently arranged in the direction of 

the generators; and the concrete forming of the doubly 

curved surfaces, when concrete is used, can be 

achieved extremely easy, by using straight wooden 

segments. 

The hyperboloid has many applications in 

constructions and architecture. Thus, for executing 

various roof systems, joining together a number of 

hyperboloid sections would be an excellent option. 

The simple surface hyperboloid of revolution can be 

obtained by revolving a hyperbola around its main 

axis, frequently employed when building cooling 

towers which can be made either from concrete cast 

on site or by using pre-cast elements. The St. Louis 

Science Center Planetarium's hyperboloid of one sheet 

exterior curved surface was conceived by Gyo Obata 

in 1963. The thin shell concrete structure rests on 12 

pillars around the building Fig. 10. 

 

 
Fig.10 
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The generators stay visible when there are other 

types of bearing structures, rhombic entanglements of 

straight generators, materialized in 2008 as the 

Tornado Tower, a 200 m-tall skyscraper in Doha, 

Qatar, Fig. 11. 

 

   
  Fig. 11   Fig. 12a 

 

The general hyperboloid can be seen in the 

architecture of two iconic buildings: The Canton 

Tower building in Guangdong, China, 2010 and the 

Museo Soumaya in Mexico City, 2011. The former is 

a 600 m –tall building presenting an open network 

structure, allowing the hyperboloid’s generators to 

stay visible, Fig. 12a/b. The latter, also built on a steel 

framework, is hidden underneath an opaque façade 

featuring 16,000 hexagonal aluminum tiles, Fig. 13. 

 

 
Fig. 12b 

 

 
Fig. 13 

 

 5. THE HYPERBOLIC PARABOLOID 

 

 The hyperbolic paraboloid is a quadric ruled 

surface generated by a straight line that lies on two 

straight directrices and is at all times parallel to a 

director plane. It is built by tracing one generator at a 

time, as a distinct variation of the general 

hyperboloid. The third straight directrix opens upward 

to the infinite and is replaced by a director plane 

parallel to the surface’s generators. 

The hyperbolic paraboloid is a doubly ruled skew 

surface. It contains two families of mutually skew 

lines that can generate the same hyperbolic 

paraboloid. The first generator family is made of 

generators parallel to the first director plane P Fig. 14. 

The second family is made of generators parallel to 

the second director plane. 

The second director plane is parallel to the two 

straight directrices Γ1 Γ2, which support the 

generators in the first family Fig. 15. Thus the 

generators in the first family may become directrices 

for those in the second family and the other way 

round. The hyperbolic paraboloid is the only ruled 

surface with two director planes. 

 
  Fig. 14   Fig. 15 

 

A hyperbolic paraboloid can be also defined by 

means of a skew quadrilateral ABCD Fig. 16. A skew 

quadrilateral determines one hyperbolic paraboloid 

and only one. The axis of the hyperbolic paraboloid is 

the straight line parallel to the intersection line of the 

two director planes; it may be determined by joining 

the middle sections of the skew quadrilateral’s 

diagonals ABCD. The tip of the hyperbolic paraboloid 

is the point on its surface where the tangent plane in 

that particular point is perpendicular on the axis of the 

hyperbolic paraboloid. The two generators that pass 

through the tip of the hyperbolic paraboloid are called 

main generators. The main generators are the 

diagonals of a parallelogram that can be obtained by 

joining the middle of the skew quadrilateral’s sides 

AbCd.  

 

 
Fig. 16 

 

  The surface of the hyperbolic 

paraboloid contains two series of straight generators 

Fig.17. They allow the delineation of skew 

quadrilateral sections of equal measure. Or, in other 

words: any skew quadrilateral may be adjacent to a 
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section of a surface of a hyperbolic paraboloid. If two 

straight opposite sides are equally subdivided and the 

subdivision points are united by straight lines, they 

become generators of the doubly curved surface by 

the hyperbolic paraboloid. 

 

 
Fig. 17 

 

The paraboloid, as a translation surface, may be 

also generated by a parabola which is moving parallel 

to its axis, along with another parabola, having 

parallel axes and pointed in different directions. 

 

5.1 FIELDS OF USE 

 

There are many examples of hyperbolic 

paraboloid in constructions and architecture where it 

can be encountered in the manufacturing of roof 

systems or in other projects which require a large 

number of surfaces, Kuala Lumpur International 

Airport in Malaysia as an example, completed in 

1998, Fig. 18. 

 

 
Fig.18 

 

An illustrative example in this respect is the 

Oceanographic in Valencia, Spain, a work of the 

architect Félix Candela, completed in 1999. Eight 

intersected hyperbolic paraboloids form a radial shell. 

The lines of striction confer stiffness to the structure 

and the edges of the paraboloids remain free, Fig. 19. 

 
Fig. 19 

In 1966, Marcel Breuer designd the church Saint 

Francis de Sales Parish in Muskegon, Michigan, 

known for his curving Brutalist form, hyperbolic 

paraboloid concrete wall, Fig. 20.  

From a structural point of view, the double 

curvature of opposite direction deals very well with 

the changing game of the internal forces of tension 

and compression, maintaining balance under any 

strain, if there is a minimum manifestation of forces. 

The surface may bear in any point or given direction 

the compression or applied stress, tangential to its 

curvature. It may be rest on the two lower points, 

taking Kuala Lumpur International, Fig. 21.      

For transmitting the self-load which is the most 

important load of a roof, the suspended parabolas with 

the curvature downwards are preferred for the tension 

efforts, and the parabolas with the curvature upwards 

are preferred for the compression forces fig. 22.  

 

 
  Fig. 20   Fig. 21 

 

 
Fig. 22 

 

It’s a positive thing that the parabolas coincide 

perfectly with the pressure lines, and that they are 

capable of supporting their own weight. The deviation 

tendencies of the forces from the parabolic curvature 

of the thin surface are therefore very reduced from the 

very beginning. 

 

6. THE CONOID 

 

The conoid surfaces are ruled surfaces generated 

by a straight line that lies on a straight directrix D and 

a curve directrix Γ, staying parallel at all times to a 

plane called director plane Fig. 23.  
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Fig. 23 

 

The conoid surfaces are a particular case of ruled 

surfaces, generated by a straight line that lies on three 

given arbitrary directrices, but where one of the 

directrices opens onward, creating the conoid with a 

director plane: it may be right or skewed. A right 

conoid with a director plane that has a circle as a 

curve directrix, as a directrix line a line parallel to the 

plane of the circle and as a director plane a plane 

perpendicular on the directrix line Fig.23. In fig. 24 

we can see the double orthogonal projection of a right 

conoid. The two sheets of the conoid intersect after 

the straight-line directrix that is called the surface’s 

line of striction. This straight line represents the 

shortest distance between any two generators of the 

surface. Sometimes, the curve directrix Γ may be 

replaced with a surface S, tangential to all the 

conoid’s generators. In this case the surface S is called 

a nucleus or a core. 

 
  Fig. 23              Fig. 24 

 

Thus we may define a right or skew conoid 

circumscribed to a given sphere. If the curve directrix 

Γ is a helical line then the conoid becomes a helical 

surface with a director plane. And if the curved 

directrix Γ is reduced to a straight line then the conoid 

may be confused with the hyperbolic paraboloid. The 

conoid surfaces are parabolic-like surfaces, meaning 

that in any of the surface’s points one of the main 

curvature axes is infinite. 

 

6.1 FIELDS OF USE 

In architecture these surfaces have been 

extensively used in the manufacturing of roof systems 

and coverings. The shape’s plastic simplicity is 

remarkable. The fact that conoids are doubly curved 

and can still be made of straight lines is of great 

importance when it comes to building thin surfaces. 

Successively arranged conoids may be used in the 

construction of sheds, such as the Oxford Road 

Station, Manchester, Great Britain (1958-60), Fig 25. 

The image represented shows the structure of the roof 

where we can notice the straight-line directrix that 

intersects a curve and another straight line directrix. In 

Gossau, Switzerland, 1954-1955 architects Heinrich 

Danzeisen, Hans Voser and engineer Heinz Hossdorf 

work on the development of an industrial building 

using conoids, Fig. 26a/b. The construction of shed 

roofs using thin conoid surfaces allows a straight roof 

edge. The surface is supported by the superior footing 

of a section of the roof and the inferior footing of the 

next. The curve of the superior footing may be a 

construction that follows the pressure line or another 

bending-resistant form, which stiffens the thin surface 

just like a buffer. 

 

 
Fig. 25 

 

 
Fig. 26a   Fig. 26b 

 

One might even include the cover of the entrance 

of the UNESCO building in Paris amidst the conoid 

use examples, a project developed by architects 

Marcel Breuer, Bernard Zehrfuss and engineer Pier 

Luigi Nervi. Two such conoid surfaces emerge in a 

console from a parabolic arch. The broader surface 

which emerges from the front side is delineated by 

two parabolas in opposite directions, of which the 

upper one is slightly curved. The surface is obtained 

by translating a straight-line generator on these two 
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parabolas Fig.27. 

 

 
Fig. 27 

 

7. CONCLUSIONS 
 

An infinite variety of forms and structures may be 

produced by using non-developable ruled surfaces. 

Thus, using portions of such surfaces, by 

reassembling them, we can obtain new forms, varied 

in terms of functionality and aesthetic purpose. As we 

are in possession of an optimum structural solution, 

we can obtain in the same time specific plastic forms 

for directing the stress and bearing capacity to the 

most important parts, for effectively creating 

reinforcements and ribs, for the expressive form of the 

footings and the visible transfer of the load. 

Currently, the new fluid forms of architecture 

dislodges from the Euclidean geometry, the geometry 

of volumes represented in the Cartesian space, using 

the geometry of curves and surfaces instead, 

mathematically described as NURBS surfaces, and in 

the descriptive geometry as Velaroidal surfaces. These 

digital architecture trends have a profound impact on 

the design and construction processes. Digital 

technology forms a common platform where many 

issues can be related to each other and be resolved 

using a common language, enabling a more diverse 

view. Yet, architects of the 21st century find 

inspiration in the great achievements of the last 

century, knowing that they already have the answers 

to a large set of limitations. This work provides a 

basis for future exploration of new concepts in 

architecture and construction. 
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